feat: Enhance conveyor collider functionality with direction toggle and visual indicators
This commit is contained in:
@@ -6,8 +6,8 @@ import RenameInput from "../../../../../ui/inputs/RenameInput";
|
||||
import LabledDropdown from "../../../../../ui/inputs/LabledDropdown";
|
||||
import Trigger from "../trigger/Trigger";
|
||||
import ActionsList from "../components/ActionsList";
|
||||
import WorkerAction from "../actions/workerAction";
|
||||
import AssemblyAction from "../actions/assemblyAction";
|
||||
import WorkerAction from "../actions/WorkerAction";
|
||||
import AssemblyAction from "../actions/AssemblyAction";
|
||||
|
||||
import { useSelectedEventData, useSelectedAction } from "../../../../../../store/simulation/useSimulationStore";
|
||||
import { upsertProductOrEventApi } from "../../../../../../services/simulation/products/UpsertProductOrEventApi";
|
||||
|
||||
@@ -2,45 +2,51 @@ import * as THREE from 'three';
|
||||
import NormalConveyorCollider from './types/normalConveyorCollider';
|
||||
import CurvedConveyorCollider from './types/curvedConveyorCollider';
|
||||
import YSplitConveyorCollider from './types/ySplitConveyorCollider';
|
||||
import { useState } from 'react';
|
||||
|
||||
function RibbonCollider({ ribbonData, boundingBox, asset }: {
|
||||
function RibbonCollider({
|
||||
ribbonData,
|
||||
boundingBox,
|
||||
asset
|
||||
}: {
|
||||
ribbonData: ConveyorPoints,
|
||||
boundingBox: THREE.Box3 | null,
|
||||
asset: Asset,
|
||||
}) {
|
||||
// console.log('ribbonData: ', ribbonData);
|
||||
const [forward, setForward] = useState(false);
|
||||
|
||||
return (
|
||||
<>
|
||||
{ribbonData.type === 'normal' &&
|
||||
{ribbonData.type === 'normal' && (
|
||||
<NormalConveyorCollider
|
||||
points={ribbonData.points}
|
||||
boundingBox={boundingBox}
|
||||
asset={asset}
|
||||
forward={false}
|
||||
forward={forward}
|
||||
isPaused={false}
|
||||
onDirectionChange={setForward}
|
||||
/>
|
||||
}
|
||||
{ribbonData.type === 'curved' &&
|
||||
)}
|
||||
{ribbonData.type === 'curved' && (
|
||||
<CurvedConveyorCollider
|
||||
points={ribbonData.points}
|
||||
boundingBox={boundingBox}
|
||||
asset={asset}
|
||||
forward={false}
|
||||
forward={forward}
|
||||
isPaused={false}
|
||||
/>
|
||||
}
|
||||
{ribbonData.type === 'y-Split' &&
|
||||
)}
|
||||
{ribbonData.type === 'y-Split' && (
|
||||
<YSplitConveyorCollider
|
||||
points={ribbonData.points}
|
||||
boundingBox={boundingBox}
|
||||
asset={asset}
|
||||
forward={false}
|
||||
forward={forward}
|
||||
isPaused={false}
|
||||
/>
|
||||
}
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
export default RibbonCollider;
|
||||
export default RibbonCollider;
|
||||
@@ -3,195 +3,360 @@ import { CollisionPayload, RigidBody } from '@react-three/rapier';
|
||||
import { useEffect, useMemo, useRef, useState } from 'react';
|
||||
import { useFrame } from '@react-three/fiber';
|
||||
|
||||
function CurvedConveyorCollider({ points, boundingBox, asset, forward, isPaused }: {
|
||||
points: [number, number, number][][],
|
||||
boundingBox: THREE.Box3 | null,
|
||||
asset: Asset,
|
||||
forward: boolean
|
||||
isPaused: boolean
|
||||
function CurvedConveyorCollider({
|
||||
points,
|
||||
boundingBox,
|
||||
asset,
|
||||
forward: initialForward,
|
||||
isPaused,
|
||||
}: {
|
||||
points: [number, number, number][][];
|
||||
boundingBox: THREE.Box3 | null;
|
||||
asset: Asset;
|
||||
forward: boolean;
|
||||
isPaused: boolean;
|
||||
}) {
|
||||
const conveyorRef = useRef<any>(null);
|
||||
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
|
||||
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
|
||||
const conveyorSpeed = 2;
|
||||
const [geometryKey, setGeometryKey] = useState(0);
|
||||
const conveyorRef = useRef<any>(null);
|
||||
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
|
||||
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
|
||||
const [forward, setForward] = useState(initialForward);
|
||||
const [showDirection, setShowDirection] = useState(false);
|
||||
const [hoverState, setHoverState] = useState(false);
|
||||
const conveyorSpeed = 2;
|
||||
const lastClickTime = useRef(0);
|
||||
const arrowRefs = useRef<THREE.Group[]>([]);
|
||||
const [geometryKey, setGeometryKey] = useState(0);
|
||||
|
||||
useEffect(() => {
|
||||
if (!boundingBox) return;
|
||||
const size = boundingBox.getSize(new THREE.Vector3());
|
||||
const [width, depth] = [size.x, size.z];
|
||||
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
|
||||
|
||||
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
|
||||
conveyorDirection.current.applyEuler(rotation);
|
||||
}, [boundingBox, asset.rotation]);
|
||||
|
||||
const handleMaterialEnter = (e: CollisionPayload) => {
|
||||
if (e.other.rigidBody) {
|
||||
setObjectsOnConveyor(prev => {
|
||||
const newSet = new Set(prev);
|
||||
newSet.add(e.other.rigidBody);
|
||||
return newSet;
|
||||
});
|
||||
// Toggle direction on double right click
|
||||
useEffect(() => {
|
||||
const handleClick = (e: MouseEvent) => {
|
||||
if (e.button === 2 && hoverState) { // Right click and hovering over conveyor
|
||||
const now = Date.now();
|
||||
if (now - lastClickTime.current < 300) {
|
||||
console.log("log");
|
||||
setForward(prev => !prev);
|
||||
}
|
||||
lastClickTime.current = now;
|
||||
}
|
||||
};
|
||||
|
||||
const handleMaterialExit = (e: CollisionPayload) => {
|
||||
if (e.other.rigidBody) {
|
||||
setObjectsOnConveyor(prev => {
|
||||
const newSet = new Set(prev);
|
||||
newSet.delete(e.other.rigidBody);
|
||||
return newSet;
|
||||
});
|
||||
window.addEventListener('mousedown', handleClick);
|
||||
return () => window.removeEventListener('mousedown', handleClick);
|
||||
}, [forward, hoverState]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!boundingBox) return;
|
||||
const size = boundingBox.getSize(new THREE.Vector3());
|
||||
const [width, depth] = [size.x, size.z];
|
||||
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
|
||||
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
|
||||
conveyorDirection.current.applyEuler(rotation);
|
||||
}, [boundingBox, asset.rotation, forward]);
|
||||
|
||||
const handleMaterialEnter = (e: CollisionPayload) => {
|
||||
if (e.other.rigidBody) {
|
||||
setObjectsOnConveyor(prev => {
|
||||
const newSet = new Set(prev);
|
||||
newSet.add(e.other.rigidBody);
|
||||
return newSet;
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
const handleMaterialExit = (e: CollisionPayload) => {
|
||||
if (e.other.rigidBody) {
|
||||
setObjectsOnConveyor(prev => {
|
||||
const newSet = new Set(prev);
|
||||
newSet.delete(e.other.rigidBody);
|
||||
return newSet;
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
const bezierPoints = useMemo(() => {
|
||||
const segments = 20;
|
||||
const allPoints: THREE.Vector3[] = [];
|
||||
|
||||
points.forEach(segment => {
|
||||
let vectorPoints = segment.map(p => new THREE.Vector3(...p));
|
||||
if (!forward) vectorPoints.reverse();
|
||||
|
||||
for (let group = 0; group + 2 < vectorPoints.length; group += 2) {
|
||||
const p0 = vectorPoints[group];
|
||||
const p1 = vectorPoints[group + 1];
|
||||
const p2 = vectorPoints[group + 2];
|
||||
|
||||
for (let i = 0; i <= segments; i++) {
|
||||
const t = i / segments;
|
||||
const point = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar((1 - t) ** 2)
|
||||
.addScaledVector(p1, 2 * (1 - t) * t)
|
||||
.addScaledVector(p2, t ** 2);
|
||||
allPoints.push(point);
|
||||
}
|
||||
};
|
||||
|
||||
const bezierPoints = useMemo(() => {
|
||||
const segments = 20;
|
||||
const allPoints: THREE.Vector3[] = [];
|
||||
|
||||
points.forEach(segment => {
|
||||
let vectorPoints = segment.map(p => new THREE.Vector3(...p));
|
||||
if (!forward) vectorPoints.reverse();
|
||||
|
||||
for (let group = 0; group + 2 < vectorPoints.length; group += 2) {
|
||||
const p0 = vectorPoints[group];
|
||||
const p1 = vectorPoints[group + 1];
|
||||
const p2 = vectorPoints[group + 2];
|
||||
|
||||
for (let i = 0; i <= segments; i++) {
|
||||
const t = i / segments;
|
||||
const point = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar((1 - t) ** 2)
|
||||
.addScaledVector(p1, 2 * (1 - t) * t)
|
||||
.addScaledVector(p2, t ** 2);
|
||||
allPoints.push(point);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
return allPoints;
|
||||
}, [points, forward]);
|
||||
|
||||
useFrame(() => {
|
||||
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
|
||||
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
|
||||
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
|
||||
const inverseQuat = assetQuat.clone().invert();
|
||||
|
||||
objectsOnConveyor.forEach(rigidBody => {
|
||||
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
|
||||
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
|
||||
|
||||
let closestIndex = 0;
|
||||
let minDist = Infinity;
|
||||
for (let i = 0; i < bezierPoints.length; i++) {
|
||||
const dist = bezierPoints[i].distanceToSquared(localPos);
|
||||
if (dist < minDist) {
|
||||
minDist = dist;
|
||||
closestIndex = i;
|
||||
}
|
||||
}
|
||||
|
||||
const point = bezierPoints[closestIndex];
|
||||
const prev = bezierPoints[closestIndex - 1] || point;
|
||||
const next = bezierPoints[closestIndex + 1] || point;
|
||||
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
|
||||
|
||||
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
const relative = new THREE.Vector3().subVectors(localPos, point);
|
||||
const sideOffset = relative.dot(side);
|
||||
|
||||
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
|
||||
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
|
||||
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
|
||||
|
||||
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
|
||||
rigidBody.setLinvel(totalForce, true);
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
const geometries = useMemo(() => {
|
||||
const width = 1;
|
||||
const segments = 20;
|
||||
const geos: THREE.BufferGeometry[] = [];
|
||||
return allPoints;
|
||||
}, [points, forward]);
|
||||
|
||||
points.forEach(segment => {
|
||||
const vertices: number[] = [];
|
||||
const indices: number[] = [];
|
||||
useFrame(({ clock }) => {
|
||||
if (isPaused) return;
|
||||
|
||||
// Physics simulation
|
||||
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
|
||||
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
|
||||
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
|
||||
const inverseQuat = assetQuat.clone().invert();
|
||||
|
||||
const vectorPoint = segment.map(p => new THREE.Vector3(...p));
|
||||
if (vectorPoint.length < 3) return;
|
||||
objectsOnConveyor.forEach(rigidBody => {
|
||||
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
|
||||
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
|
||||
|
||||
for (let group = 0; group + 2 < vectorPoint.length; group += 2) {
|
||||
const p0 = vectorPoint[group];
|
||||
const p1 = vectorPoint[group + 1];
|
||||
const p2 = vectorPoint[group + 2];
|
||||
let closestIndex = 0;
|
||||
let minDist = Infinity;
|
||||
for (let i = 0; i < bezierPoints.length; i++) {
|
||||
const dist = bezierPoints[i].distanceToSquared(localPos);
|
||||
if (dist < minDist) {
|
||||
minDist = dist;
|
||||
closestIndex = i;
|
||||
}
|
||||
}
|
||||
|
||||
for (let i = 0; i <= segments; i++) {
|
||||
const t = i / segments;
|
||||
const point = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar((1 - t) ** 2)
|
||||
.addScaledVector(p1, 2 * (1 - t) * t)
|
||||
.addScaledVector(p2, t ** 2);
|
||||
const point = bezierPoints[closestIndex];
|
||||
const prev = bezierPoints[closestIndex - 1] || point;
|
||||
const next = bezierPoints[closestIndex + 1] || point;
|
||||
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
|
||||
|
||||
const tangent = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar(-2 * (1 - t))
|
||||
.addScaledVector(p1, 2 - 4 * t)
|
||||
.addScaledVector(p2, 2 * t)
|
||||
.normalize();
|
||||
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
const relative = new THREE.Vector3().subVectors(localPos, point);
|
||||
const sideOffset = relative.dot(side);
|
||||
|
||||
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
const left = new THREE.Vector3().copy(point).addScaledVector(normal, -width / 2);
|
||||
const right = new THREE.Vector3().copy(point).addScaledVector(normal, width / 2);
|
||||
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
|
||||
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
|
||||
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
|
||||
|
||||
vertices.push(...left.toArray(), ...right.toArray());
|
||||
}
|
||||
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
|
||||
rigidBody.setLinvel(totalForce, true);
|
||||
});
|
||||
|
||||
// Arrow animations
|
||||
if (showDirection && arrowRefs.current.length > 0) {
|
||||
const elapsedTime = clock.getElapsedTime();
|
||||
arrowRefs.current.forEach((arrowGroup, index) => {
|
||||
// Pulse animation
|
||||
const pulseScale = 0.9 + 0.1 * Math.sin(elapsedTime * 5 + index * 0.5);
|
||||
arrowGroup.scale.setScalar(pulseScale);
|
||||
|
||||
// Flow animation (color intensity)
|
||||
const intensity = 0.7 + 0.3 * Math.sin(elapsedTime * 3 + index * 0.3);
|
||||
arrowGroup.children.forEach(child => {
|
||||
if (child instanceof THREE.Mesh) {
|
||||
const material = child.material as THREE.MeshBasicMaterial;
|
||||
if (forward) {
|
||||
material.color.setRGB(0, intensity, 0);
|
||||
} else {
|
||||
material.color.setRGB(intensity, 0, 0);
|
||||
}
|
||||
|
||||
const totalSegments = ((vectorPoint.length - 1) / 2) * segments;
|
||||
for (let i = 0; i < totalSegments; i++) {
|
||||
const base = i * 2;
|
||||
indices.push(base, base + 1, base + 2);
|
||||
indices.push(base + 1, base + 3, base + 2);
|
||||
}
|
||||
|
||||
const ribbonGeometry = new THREE.BufferGeometry();
|
||||
ribbonGeometry.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3));
|
||||
ribbonGeometry.setIndex(indices);
|
||||
ribbonGeometry.computeVertexNormals();
|
||||
geos.push(ribbonGeometry);
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
setGeometryKey(k => k + 1);
|
||||
return geos;
|
||||
}, [points, asset.position, asset.rotation]);
|
||||
const geometries = useMemo(() => {
|
||||
const width = 1;
|
||||
const segments = 20;
|
||||
const geos: THREE.BufferGeometry[] = [];
|
||||
|
||||
return (
|
||||
<>
|
||||
{geometries.length > 0 && (
|
||||
<RigidBody
|
||||
key={geometryKey}
|
||||
ref={conveyorRef}
|
||||
type="fixed"
|
||||
position={[0, 0.001, 0]}
|
||||
userData={{ isConveyor: true }}
|
||||
onCollisionEnter={handleMaterialEnter}
|
||||
onCollisionExit={handleMaterialExit}
|
||||
colliders="trimesh"
|
||||
>
|
||||
{geometries.map((geometry, index) => (
|
||||
<mesh key={index} geometry={geometry}>
|
||||
<meshStandardMaterial color="skyblue" side={THREE.DoubleSide} transparent opacity={0.5} visible={false}/>
|
||||
</mesh>
|
||||
))}
|
||||
</RigidBody>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
points.forEach(segment => {
|
||||
const vertices: number[] = [];
|
||||
const indices: number[] = [];
|
||||
|
||||
const vectorPoint = segment.map(p => new THREE.Vector3(...p));
|
||||
if (vectorPoint.length < 3) return;
|
||||
|
||||
for (let group = 0; group + 2 < vectorPoint.length; group += 2) {
|
||||
const p0 = vectorPoint[group];
|
||||
const p1 = vectorPoint[group + 1];
|
||||
const p2 = vectorPoint[group + 2];
|
||||
|
||||
for (let i = 0; i <= segments; i++) {
|
||||
const t = i / segments;
|
||||
const point = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar((1 - t) ** 2)
|
||||
.addScaledVector(p1, 2 * (1 - t) * t)
|
||||
.addScaledVector(p2, t ** 2);
|
||||
|
||||
const tangent = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar(-2 * (1 - t))
|
||||
.addScaledVector(p1, 2 - 4 * t)
|
||||
.addScaledVector(p2, 2 * t)
|
||||
.normalize();
|
||||
|
||||
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
const left = new THREE.Vector3().copy(point).addScaledVector(normal, -width / 2);
|
||||
const right = new THREE.Vector3().copy(point).addScaledVector(normal, width / 2);
|
||||
|
||||
vertices.push(...left.toArray(), ...right.toArray());
|
||||
}
|
||||
}
|
||||
|
||||
const totalSegments = ((vectorPoint.length - 1) / 2) * segments;
|
||||
for (let i = 0; i < totalSegments; i++) {
|
||||
const base = i * 2;
|
||||
indices.push(base, base + 1, base + 2);
|
||||
indices.push(base + 1, base + 3, base + 2);
|
||||
}
|
||||
|
||||
const ribbonGeometry = new THREE.BufferGeometry();
|
||||
ribbonGeometry.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3));
|
||||
ribbonGeometry.setIndex(indices);
|
||||
ribbonGeometry.computeVertexNormals();
|
||||
geos.push(ribbonGeometry);
|
||||
});
|
||||
|
||||
setGeometryKey(k => k + 1);
|
||||
return geos;
|
||||
}, [points, asset.position, asset.rotation]);
|
||||
|
||||
// Create curved direction indicators
|
||||
const directionArrows = useMemo(() => {
|
||||
if (!showDirection) return null;
|
||||
|
||||
const arrows: THREE.Group[] = [];
|
||||
const arrowHeight = 0.2;
|
||||
const arrowRadius = 0.05;
|
||||
const segments = 8; // Fewer arrows for curved conveyors
|
||||
|
||||
points.forEach(segment => {
|
||||
let vectorPoints = segment.map(p => new THREE.Vector3(...p));
|
||||
if (!forward) vectorPoints.reverse();
|
||||
|
||||
for (let group = 0; group + 2 < vectorPoints.length; group += 2) {
|
||||
const p0 = vectorPoints[group];
|
||||
const p1 = vectorPoints[group + 1];
|
||||
const p2 = vectorPoints[group + 2];
|
||||
|
||||
for (let i = 0; i <= segments; i++) {
|
||||
const t = i / segments;
|
||||
const point = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar((1 - t) ** 2)
|
||||
.addScaledVector(p1, 2 * (1 - t) * t)
|
||||
.addScaledVector(p2, t ** 2);
|
||||
|
||||
const tangent = new THREE.Vector3()
|
||||
.copy(p0)
|
||||
.multiplyScalar(-2 * (1 - t))
|
||||
.addScaledVector(p1, 2 - 4 * t)
|
||||
.addScaledVector(p2, 2 * t)
|
||||
.normalize();
|
||||
|
||||
// Create arrow group
|
||||
const arrowGroup = new THREE.Group();
|
||||
|
||||
// Arrow shaft (cylinder)
|
||||
const shaftLength = arrowHeight * 0.7;
|
||||
const shaftGeometry = new THREE.CylinderGeometry(arrowRadius * 0.3, arrowRadius * 0.3, shaftLength, 8);
|
||||
const shaftMaterial = new THREE.MeshBasicMaterial({
|
||||
color: forward ? 0x00ff00 : 0xff0000
|
||||
});
|
||||
const shaft = new THREE.Mesh(shaftGeometry, shaftMaterial);
|
||||
shaft.position.y = shaftLength / 2;
|
||||
shaft.rotation.x = Math.PI / 2;
|
||||
|
||||
// Arrow head (cone)
|
||||
const headGeometry = new THREE.ConeGeometry(arrowRadius, arrowHeight * 0.3, 8);
|
||||
const headMaterial = new THREE.MeshBasicMaterial({
|
||||
color: forward ? 0x00ff00 : 0xff0000
|
||||
});
|
||||
const head = new THREE.Mesh(headGeometry, headMaterial);
|
||||
head.position.y = shaftLength;
|
||||
|
||||
// Position and orient the entire arrow
|
||||
arrowGroup.add(shaft);
|
||||
arrowGroup.add(head);
|
||||
arrowGroup.position.copy(point);
|
||||
arrowGroup.position.y += 0.1; // Slightly above conveyor
|
||||
arrowGroup.quaternion.setFromUnitVectors(
|
||||
new THREE.Vector3(0, 1, 0),
|
||||
new THREE.Vector3(tangent.x, 0.1, tangent.z)
|
||||
);
|
||||
|
||||
arrows.push(arrowGroup);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
arrowRefs.current = arrows;
|
||||
return arrows;
|
||||
}, [points, showDirection, forward]);
|
||||
|
||||
return (
|
||||
<group
|
||||
onPointerOver={() => {
|
||||
setShowDirection(true);
|
||||
setHoverState(true);
|
||||
}}
|
||||
onPointerOut={() => {
|
||||
setShowDirection(false);
|
||||
setHoverState(false);
|
||||
}}
|
||||
>
|
||||
{/* Conveyor surface */}
|
||||
{geometries.length > 0 && (
|
||||
<RigidBody
|
||||
key={geometryKey}
|
||||
ref={conveyorRef}
|
||||
type="fixed"
|
||||
position={[0, 0.001, 0]}
|
||||
userData={{ isConveyor: true }}
|
||||
onCollisionEnter={handleMaterialEnter}
|
||||
onCollisionExit={handleMaterialExit}
|
||||
colliders="trimesh"
|
||||
>
|
||||
{geometries.map((geometry, index) => (
|
||||
<mesh key={index} geometry={geometry}>
|
||||
<meshStandardMaterial
|
||||
color={forward ? "#64b5f6" : "#f48fb1"}
|
||||
side={THREE.DoubleSide}
|
||||
transparent
|
||||
opacity={0.7}
|
||||
/>
|
||||
</mesh>
|
||||
))}
|
||||
</RigidBody>
|
||||
)}
|
||||
|
||||
{/* Direction indicators */}
|
||||
{showDirection && directionArrows?.map((arrow, i) => (
|
||||
<primitive key={`arrow-${i}`} object={arrow} />
|
||||
))}
|
||||
|
||||
{/* Hover highlight */}
|
||||
{hoverState && (
|
||||
<group>
|
||||
{geometries.map((geometry, index) => (
|
||||
<mesh
|
||||
key={`highlight-${index}`}
|
||||
geometry={geometry}
|
||||
position={[0, 0.002, 0]} // Slightly above conveyor
|
||||
>
|
||||
<meshBasicMaterial
|
||||
color={forward ? "#00ff0044" : "#ff000044"}
|
||||
transparent
|
||||
opacity={0.3}
|
||||
/>
|
||||
</mesh>
|
||||
))}
|
||||
</group>
|
||||
)}
|
||||
</group>
|
||||
);
|
||||
}
|
||||
|
||||
export default CurvedConveyorCollider;
|
||||
export default CurvedConveyorCollider;
|
||||
@@ -9,27 +9,49 @@ function NormalConveyorCollider({
|
||||
asset,
|
||||
forward,
|
||||
isPaused,
|
||||
onDirectionChange
|
||||
}: {
|
||||
points: [number, number, number][][];
|
||||
boundingBox: THREE.Box3 | null;
|
||||
asset: Asset;
|
||||
forward: boolean;
|
||||
isPaused: boolean;
|
||||
onDirectionChange?: (newDirection: boolean) => void;
|
||||
}) {
|
||||
const conveyorRefs = useRef<any[]>([]);
|
||||
const conveyorRefs = useRef<(any)[]>([]);
|
||||
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
|
||||
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
|
||||
const [showDirection, setShowDirection] = useState(false);
|
||||
const conveyorSpeed = 2;
|
||||
const lastClickTime = useRef(0);
|
||||
const [hoverState, setHoverState] = useState(false);
|
||||
|
||||
// Toggle direction on double right click
|
||||
useEffect(() => {
|
||||
const handleClick = (e: MouseEvent) => {
|
||||
if (e.button === 2) { // Right click
|
||||
const now = Date.now();
|
||||
if (now - lastClickTime.current < 300) { // Double click within 300ms
|
||||
if (onDirectionChange) {
|
||||
onDirectionChange(!forward);
|
||||
}
|
||||
}
|
||||
lastClickTime.current = now;
|
||||
}
|
||||
};
|
||||
|
||||
window.addEventListener('mousedown', handleClick);
|
||||
return () => window.removeEventListener('mousedown', handleClick);
|
||||
}, [forward]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!boundingBox) return;
|
||||
const size = boundingBox.getSize(new THREE.Vector3());
|
||||
const [width, depth] = [size.x, size.z];
|
||||
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
|
||||
|
||||
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
|
||||
conveyorDirection.current.applyEuler(rotation);
|
||||
}, [boundingBox, asset.rotation]);
|
||||
}, [boundingBox, asset.rotation, forward]);
|
||||
|
||||
const handleMaterialEnter = (e: CollisionPayload) => {
|
||||
if (e.other.rigidBody) {
|
||||
@@ -52,6 +74,8 @@ function NormalConveyorCollider({
|
||||
};
|
||||
|
||||
useFrame(() => {
|
||||
if (isPaused) return;
|
||||
|
||||
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
|
||||
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
|
||||
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
|
||||
@@ -60,7 +84,6 @@ function NormalConveyorCollider({
|
||||
const allCurvePoints: THREE.Vector3[] = [];
|
||||
const segmentCurves: THREE.Vector3[][] = [];
|
||||
|
||||
// Build all curve points across segments
|
||||
points.forEach(segment => {
|
||||
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
|
||||
const curvePoints = curve.getPoints((segment.length - 1) * 30);
|
||||
@@ -74,7 +97,6 @@ function NormalConveyorCollider({
|
||||
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
|
||||
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
|
||||
|
||||
// Find closest point on full conveyor
|
||||
let closestIndex = 0;
|
||||
let minDist = Infinity;
|
||||
for (let i = 0; i < allCurvePoints.length; i++) {
|
||||
@@ -91,12 +113,11 @@ function NormalConveyorCollider({
|
||||
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
|
||||
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
const relative = new THREE.Vector3().subVectors(localPos, point);
|
||||
|
||||
const sideOffset = relative.dot(side);
|
||||
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
|
||||
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
|
||||
|
||||
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
|
||||
|
||||
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
|
||||
rigidBody.setLinvel(totalForce, true);
|
||||
});
|
||||
@@ -107,7 +128,6 @@ function NormalConveyorCollider({
|
||||
const segments = 30;
|
||||
return points.map(segment => {
|
||||
if (segment.length < 2) return null;
|
||||
|
||||
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
|
||||
const curvePoints = curve.getPoints((segment.length - 1) * segments);
|
||||
const vertices: number[] = [];
|
||||
@@ -117,13 +137,10 @@ function NormalConveyorCollider({
|
||||
const point = curvePoints[i];
|
||||
const prev = curvePoints[i - 1] || point;
|
||||
const next = curvePoints[i + 1] || point;
|
||||
|
||||
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
|
||||
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
|
||||
const left = point.clone().addScaledVector(normal, -width / 2);
|
||||
const right = point.clone().addScaledVector(normal, width / 2);
|
||||
|
||||
vertices.push(...left.toArray(), ...right.toArray());
|
||||
}
|
||||
|
||||
@@ -138,11 +155,48 @@ function NormalConveyorCollider({
|
||||
geo.setIndex(indices);
|
||||
geo.computeVertexNormals();
|
||||
return geo;
|
||||
}).filter(Boolean);
|
||||
}).filter((geo): geo is THREE.BufferGeometry => geo !== null);
|
||||
}, [points, asset.position, asset.rotation]);
|
||||
|
||||
// Create direction indicators
|
||||
const directionArrows = useMemo(() => {
|
||||
|
||||
if (!showDirection) return null;
|
||||
|
||||
const arrows: THREE.Mesh[] = [];
|
||||
const arrowGeometry = new THREE.ConeGeometry(0.05, 0.2, 8);
|
||||
const arrowMaterial = new THREE.MeshBasicMaterial({ color: forward ? 0x00ff00 : 0xff0000 });
|
||||
|
||||
points.forEach(segment => {
|
||||
if (segment.length < 2) return;
|
||||
|
||||
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
|
||||
const curvePoints = curve.getPoints(10); // Fewer points for arrows
|
||||
|
||||
for (let i = 0; i < curvePoints.length; i++) {
|
||||
const point = curvePoints[i];
|
||||
const next = curvePoints[i + 1] || point;
|
||||
const direction = new THREE.Vector3().subVectors(next, point).normalize();
|
||||
|
||||
const arrow = new THREE.Mesh(arrowGeometry, arrowMaterial);
|
||||
arrow.position.copy(point);
|
||||
arrow.quaternion.setFromUnitVectors(
|
||||
new THREE.Vector3(0, forward ? 1 : -1, 0),
|
||||
new THREE.Vector3(direction.x, 0.1, direction.z)
|
||||
);
|
||||
arrows.push(arrow);
|
||||
//
|
||||
}
|
||||
});
|
||||
|
||||
return arrows;
|
||||
}, [points, showDirection, forward]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<group
|
||||
onPointerEnter={() => { setShowDirection(true); setHoverState(true); }}
|
||||
onPointerLeave={() => { setShowDirection(false); setHoverState(false); }}
|
||||
>
|
||||
{geometries.map((geometry, index) => (
|
||||
<RigidBody
|
||||
key={index}
|
||||
@@ -153,15 +207,45 @@ function NormalConveyorCollider({
|
||||
onCollisionEnter={handleMaterialEnter}
|
||||
onCollisionExit={handleMaterialExit}
|
||||
colliders="trimesh"
|
||||
// visible={false}
|
||||
>
|
||||
<mesh geometry={geometry!}>
|
||||
<meshStandardMaterial color="skyblue" side={THREE.DoubleSide} transparent opacity={0.5} visible={false} />
|
||||
<mesh geometry={geometry}>
|
||||
<meshStandardMaterial
|
||||
color={forward ? "skyblue" : "pink"}
|
||||
side={THREE.DoubleSide}
|
||||
transparent
|
||||
opacity={0.5}
|
||||
/>
|
||||
</mesh>
|
||||
</RigidBody>
|
||||
))}
|
||||
</>
|
||||
|
||||
{showDirection && directionArrows?.map((arrow, i) => (
|
||||
<primitive
|
||||
key={`arrow-${i}`}
|
||||
object={arrow}
|
||||
/>
|
||||
))}
|
||||
|
||||
{/* Hover highlight */}
|
||||
{hoverState && (
|
||||
<group>
|
||||
{geometries.map((geometry, index) => (
|
||||
<mesh
|
||||
key={`highlight-${index}`}
|
||||
geometry={geometry}
|
||||
position={[0, 0.002, 0]} // Slightly above conveyor
|
||||
>
|
||||
<meshBasicMaterial
|
||||
color={forward ? "#00ff0044" : "#ff000044"}
|
||||
transparent
|
||||
opacity={0.3}
|
||||
/>
|
||||
</mesh>
|
||||
))}
|
||||
</group>
|
||||
)}
|
||||
</group>
|
||||
);
|
||||
}
|
||||
|
||||
export default NormalConveyorCollider;
|
||||
export default NormalConveyorCollider;
|
||||
@@ -3,33 +3,61 @@ import { CollisionPayload, RigidBody } from '@react-three/rapier';
|
||||
import { useEffect, useMemo, useRef, useState } from 'react';
|
||||
import { useFrame } from '@react-three/fiber';
|
||||
|
||||
function YSplitConveyorCollider({
|
||||
points,
|
||||
boundingBox,
|
||||
asset,
|
||||
forward,
|
||||
isPaused,
|
||||
}: {
|
||||
interface YSplitConveyorColliderProps {
|
||||
points: [number, number, number][][];
|
||||
boundingBox: THREE.Box3 | null;
|
||||
asset: Asset;
|
||||
forward: boolean;
|
||||
isPaused: boolean;
|
||||
}) {
|
||||
const conveyorRefs = useRef<any[]>([]);
|
||||
onDirectionChange?: (newDirection: boolean) => void;
|
||||
}
|
||||
|
||||
function YSplitConveyorCollider({
|
||||
points,
|
||||
boundingBox,
|
||||
asset,
|
||||
forward: initialForward,
|
||||
isPaused,
|
||||
onDirectionChange
|
||||
}: YSplitConveyorColliderProps) {
|
||||
const conveyorRefs = useRef<(any | null)[]>([]);
|
||||
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
|
||||
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
|
||||
const [forward, setForward] = useState(initialForward);
|
||||
const [showDirection, setShowDirection] = useState(false);
|
||||
const [hoverState, setHoverState] = useState(false);
|
||||
const conveyorSpeed = 2;
|
||||
const lastClickTime = useRef(0);
|
||||
const arrowRefs = useRef<THREE.Group[]>([]);
|
||||
|
||||
// Toggle direction on double right click
|
||||
useEffect(() => {
|
||||
const handleClick = (e: MouseEvent) => {
|
||||
if (e.button === 2 && hoverState) { // Right click and hovering over conveyor
|
||||
const now = Date.now();
|
||||
if (now - lastClickTime.current < 300) { // Double click within 300ms
|
||||
const newDirection = !forward;
|
||||
setForward(newDirection);
|
||||
if (onDirectionChange) {
|
||||
onDirectionChange(newDirection);
|
||||
}
|
||||
}
|
||||
lastClickTime.current = now;
|
||||
}
|
||||
};
|
||||
|
||||
window.addEventListener('mousedown', handleClick);
|
||||
return () => window.removeEventListener('mousedown', handleClick);
|
||||
}, [forward, hoverState, onDirectionChange]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!boundingBox) return;
|
||||
const size = boundingBox.getSize(new THREE.Vector3());
|
||||
const [width, depth] = [size.x, size.z];
|
||||
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
|
||||
|
||||
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
|
||||
conveyorDirection.current.applyEuler(rotation);
|
||||
}, [boundingBox, asset.rotation]);
|
||||
}, [boundingBox, asset.rotation, forward]);
|
||||
|
||||
const handleMaterialEnter = (e: CollisionPayload) => {
|
||||
if (e.other.rigidBody) {
|
||||
@@ -51,21 +79,18 @@ function YSplitConveyorCollider({
|
||||
}
|
||||
};
|
||||
|
||||
useFrame(() => {
|
||||
useFrame(({ clock }) => {
|
||||
if (isPaused) return;
|
||||
// Update physics
|
||||
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
|
||||
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
|
||||
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
|
||||
const inverseQuat = assetQuat.clone().invert();
|
||||
|
||||
const allCurvePoints: THREE.Vector3[] = [];
|
||||
const segmentCurves: THREE.Vector3[][] = [];
|
||||
|
||||
// Build all curve points across segments
|
||||
points.forEach(segment => {
|
||||
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
|
||||
const curvePoints = curve.getPoints((segment.length - 1) * 30);
|
||||
segmentCurves.push(curvePoints);
|
||||
allCurvePoints.push(...curvePoints);
|
||||
allCurvePoints.push(...curve.getPoints((segment.length - 1) * 30));
|
||||
});
|
||||
|
||||
if (!forward) allCurvePoints.reverse();
|
||||
@@ -74,7 +99,6 @@ function YSplitConveyorCollider({
|
||||
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
|
||||
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
|
||||
|
||||
// Find closest point on full conveyor
|
||||
let closestIndex = 0;
|
||||
let minDist = Infinity;
|
||||
for (let i = 0; i < allCurvePoints.length; i++) {
|
||||
@@ -91,15 +115,37 @@ function YSplitConveyorCollider({
|
||||
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
|
||||
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
const relative = new THREE.Vector3().subVectors(localPos, point);
|
||||
|
||||
const sideOffset = relative.dot(side);
|
||||
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
|
||||
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
|
||||
|
||||
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
|
||||
|
||||
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
|
||||
rigidBody.setLinvel(totalForce, true);
|
||||
});
|
||||
|
||||
// Animate direction arrows
|
||||
if (showDirection && arrowRefs.current.length > 0) {
|
||||
const elapsedTime = clock.getElapsedTime();
|
||||
arrowRefs.current.forEach((arrowGroup, index) => {
|
||||
// Pulse animation
|
||||
const pulseScale = 0.9 + 0.1 * Math.sin(elapsedTime * 5 + index * 0.5);
|
||||
arrowGroup.scale.setScalar(pulseScale);
|
||||
|
||||
// Flow animation (color intensity)
|
||||
const intensity = 0.7 + 0.3 * Math.sin(elapsedTime * 3 + index * 0.3);
|
||||
arrowGroup.children.forEach(child => {
|
||||
if (child instanceof THREE.Mesh) {
|
||||
const material = child.material as THREE.MeshBasicMaterial;
|
||||
if (forward) {
|
||||
material.color.setRGB(0, intensity, 0);
|
||||
} else {
|
||||
material.color.setRGB(intensity, 0, 0);
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
const geometries = useMemo(() => {
|
||||
@@ -107,7 +153,6 @@ function YSplitConveyorCollider({
|
||||
const segments = 30;
|
||||
return points.map(segment => {
|
||||
if (segment.length < 2) return null;
|
||||
|
||||
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
|
||||
const curvePoints = curve.getPoints((segment.length - 1) * segments);
|
||||
const vertices: number[] = [];
|
||||
@@ -117,13 +162,10 @@ function YSplitConveyorCollider({
|
||||
const point = curvePoints[i];
|
||||
const prev = curvePoints[i - 1] || point;
|
||||
const next = curvePoints[i + 1] || point;
|
||||
|
||||
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
|
||||
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
|
||||
|
||||
const left = point.clone().addScaledVector(normal, -width / 2);
|
||||
const right = point.clone().addScaledVector(normal, width / 2);
|
||||
|
||||
vertices.push(...left.toArray(), ...right.toArray());
|
||||
}
|
||||
|
||||
@@ -138,14 +180,82 @@ function YSplitConveyorCollider({
|
||||
geo.setIndex(indices);
|
||||
geo.computeVertexNormals();
|
||||
return geo;
|
||||
}).filter(Boolean);
|
||||
}).filter((geo): geo is THREE.BufferGeometry => geo !== null);
|
||||
}, [points, asset.position, asset.rotation]);
|
||||
|
||||
// Create direction indicators
|
||||
const directionArrows = useMemo(() => {
|
||||
if (!showDirection) return null;
|
||||
|
||||
const arrows: THREE.Group[] = [];
|
||||
const arrowHeight = 0.2;
|
||||
const arrowRadius = 0.05;
|
||||
|
||||
points.forEach(segment => {
|
||||
if (segment.length < 2) return;
|
||||
|
||||
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
|
||||
const curvePoints = curve.getPoints(8); // Fewer points for arrows
|
||||
|
||||
for (let i = 0; i < curvePoints.length; i++) {
|
||||
const point = curvePoints[i];
|
||||
const next = curvePoints[i + 1] || point;
|
||||
const direction = new THREE.Vector3().subVectors(next, point).normalize();
|
||||
|
||||
// Create arrow group
|
||||
const arrowGroup = new THREE.Group();
|
||||
|
||||
// Arrow shaft (cylinder)
|
||||
const shaftLength = arrowHeight * 0.7;
|
||||
const shaftGeometry = new THREE.CylinderGeometry(arrowRadius * 0.3, arrowRadius * 0.3, shaftLength, 8);
|
||||
const shaftMaterial = new THREE.MeshBasicMaterial({
|
||||
color: forward ? 0x00ff00 : 0xff0000
|
||||
});
|
||||
const shaft = new THREE.Mesh(shaftGeometry, shaftMaterial);
|
||||
shaft.position.y = shaftLength / 2;
|
||||
shaft.rotation.x = Math.PI / 2;
|
||||
|
||||
// Arrow head (cone)
|
||||
const headGeometry = new THREE.ConeGeometry(arrowRadius, arrowHeight * 0.3, 8);
|
||||
const headMaterial = new THREE.MeshBasicMaterial({
|
||||
color: forward ? 0x00ff00 : 0xff0000
|
||||
});
|
||||
const head = new THREE.Mesh(headGeometry, headMaterial);
|
||||
head.position.y = shaftLength;
|
||||
|
||||
// Position and orient the entire arrow
|
||||
arrowGroup.add(shaft);
|
||||
arrowGroup.add(head);
|
||||
arrowGroup.position.copy(point);
|
||||
arrowGroup.position.y += 0.1; // Slightly above conveyor
|
||||
arrowGroup.quaternion.setFromUnitVectors(
|
||||
new THREE.Vector3(0, 1, 0),
|
||||
new THREE.Vector3(direction.x, 0.1, direction.z)
|
||||
);
|
||||
|
||||
arrows.push(arrowGroup);
|
||||
}
|
||||
});
|
||||
|
||||
arrowRefs.current = arrows;
|
||||
return arrows;
|
||||
}, [points, showDirection, forward]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<group
|
||||
onPointerOver={() => {
|
||||
setShowDirection(true);
|
||||
setHoverState(true);
|
||||
}}
|
||||
onPointerOut={() => {
|
||||
setShowDirection(false);
|
||||
setHoverState(false);
|
||||
}}
|
||||
>
|
||||
{/* Conveyor surface */}
|
||||
{geometries.map((geometry, index) => (
|
||||
<RigidBody
|
||||
key={index}
|
||||
key={`conveyor-${index}`}
|
||||
ref={el => (conveyorRefs.current[index] = el)}
|
||||
type="fixed"
|
||||
position={[0, 0.001, 0]}
|
||||
@@ -154,14 +264,45 @@ function YSplitConveyorCollider({
|
||||
onCollisionExit={handleMaterialExit}
|
||||
colliders="trimesh"
|
||||
>
|
||||
<mesh geometry={geometry!}>
|
||||
<meshStandardMaterial color="skyblue" side={THREE.DoubleSide} transparent opacity={0.5} visible={false}/>
|
||||
<mesh geometry={geometry}>
|
||||
<meshStandardMaterial
|
||||
color={forward ? "#64b5f6" : "#f48fb1"} // More subtle colors
|
||||
side={THREE.DoubleSide}
|
||||
transparent
|
||||
opacity={0.7}
|
||||
/>
|
||||
</mesh>
|
||||
</RigidBody>
|
||||
))}
|
||||
</>
|
||||
|
||||
{/* Direction indicators */}
|
||||
{showDirection && directionArrows?.map((arrow, i) => (
|
||||
<primitive
|
||||
key={`arrow-${i}`}
|
||||
object={arrow}
|
||||
/>
|
||||
))}
|
||||
|
||||
{/* Hover highlight */}
|
||||
{hoverState && (
|
||||
<group>
|
||||
{geometries.map((geometry, index) => (
|
||||
<mesh
|
||||
key={`highlight-${index}`}
|
||||
geometry={geometry}
|
||||
position={[0, 0.002, 0]} // Slightly above conveyor
|
||||
>
|
||||
<meshBasicMaterial
|
||||
color={forward ? "#00ff0044" : "#ff000044"}
|
||||
transparent
|
||||
opacity={0.3}
|
||||
/>
|
||||
</mesh>
|
||||
))}
|
||||
</group>
|
||||
)}
|
||||
</group>
|
||||
);
|
||||
}
|
||||
|
||||
export default YSplitConveyorCollider;
|
||||
|
||||
export default YSplitConveyorCollider;
|
||||
@@ -4,7 +4,7 @@ import { useLoadingProgress } from '../../../store/builder/store';
|
||||
import { MaterialModel } from '../../simulation/materials/instances/material/materialModel';
|
||||
import { useThree } from '@react-three/fiber';
|
||||
import * as THREE from 'three';
|
||||
import { CameraControls } from '@react-three/drei';
|
||||
import { CameraControls, TransformControls } from '@react-three/drei';
|
||||
import { generateUniqueId } from '../../../functions/generateUniqueId';
|
||||
|
||||
type MaterialSpawnerProps = {
|
||||
@@ -13,7 +13,7 @@ type MaterialSpawnerProps = {
|
||||
spawnCount: number;
|
||||
};
|
||||
|
||||
function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawnerProps) {
|
||||
function MaterialSpawner({ position: initialPos, spawnInterval, spawnCount }: MaterialSpawnerProps) {
|
||||
const { loadingProgress } = useLoadingProgress();
|
||||
const [spawned, setSpawned] = useState<{
|
||||
id: string;
|
||||
@@ -28,6 +28,9 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
|
||||
const dragOffset = useRef<THREE.Vector3>(new THREE.Vector3());
|
||||
const initialDepth = useRef<number>(0);
|
||||
const materialTypes = ['Default material', 'Material 1', 'Material 2', 'Material 3'];
|
||||
const [boxPosition, setBoxPosition] = useState<[number, number, number]>(initialPos);
|
||||
const spawnerRef = useRef<THREE.Mesh>(null!);
|
||||
const newPositionRef = useRef<[number, number, number]>([...initialPos]);
|
||||
|
||||
useEffect(() => {
|
||||
if (loadingProgress !== 0) return;
|
||||
@@ -46,13 +49,16 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
|
||||
}
|
||||
spawnedCount.current++;
|
||||
|
||||
const randomMaterialType = materialTypes[Math.floor(Math.random() * materialTypes.length)];
|
||||
const randomMaterialType =
|
||||
materialTypes[Math.floor(Math.random() * materialTypes.length)];
|
||||
|
||||
|
||||
console.log('boxPosition: ', boxPosition);
|
||||
return [
|
||||
...prev,
|
||||
{
|
||||
id: generateUniqueId(),
|
||||
position,
|
||||
position: [...boxPosition] as [number, number, number], // use latest position state
|
||||
ref: React.createRef<RapierRigidBody>(),
|
||||
materialType: randomMaterialType,
|
||||
}
|
||||
@@ -85,7 +91,9 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
|
||||
stopSpawning();
|
||||
document.removeEventListener('visibilitychange', handleVisibility);
|
||||
};
|
||||
}, [loadingProgress, spawnInterval, spawnCount, position, spawningPaused]);
|
||||
|
||||
}, [loadingProgress, spawnInterval, spawnCount, spawningPaused, boxPosition]);
|
||||
|
||||
|
||||
const handleSleep = (id: string) => {
|
||||
setSpawned(prev => prev.filter(obj => obj.id !== id));
|
||||
@@ -180,16 +188,37 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
|
||||
const handleBoxContextMenu = () => {
|
||||
};
|
||||
|
||||
|
||||
return (
|
||||
<>
|
||||
<mesh
|
||||
position={position}
|
||||
onClick={handleBoxClick}
|
||||
onContextMenu={handleBoxContextMenu}
|
||||
<TransformControls
|
||||
position={boxPosition}
|
||||
scale={[0.5, 0.5, 0.5]}
|
||||
|
||||
onMouseDown={() => {
|
||||
if (controls) (controls as CameraControls).enabled = false;
|
||||
}}
|
||||
onMouseUp={() => {
|
||||
if (controls) (controls as CameraControls).enabled = true;
|
||||
setBoxPosition(newPositionRef.current);
|
||||
}}
|
||||
onObjectChange={() => {
|
||||
if (spawnerRef.current) {
|
||||
const pos = spawnerRef.current.position;
|
||||
newPositionRef.current = [pos.x, pos.y, pos.z]; // Save latest
|
||||
}
|
||||
}}
|
||||
>
|
||||
<boxGeometry args={[1, 1, 1]} />
|
||||
<meshStandardMaterial color={spawningPaused ? "red" : "white"} transparent opacity={0.2} />
|
||||
</mesh>
|
||||
<mesh
|
||||
ref={spawnerRef}
|
||||
// position={boxPosition}
|
||||
onClick={handleBoxClick}
|
||||
// onContextMenu={handleBoxContextMenu}
|
||||
>
|
||||
<boxGeometry args={[1, 1, 1]} />
|
||||
<meshStandardMaterial color={spawningPaused ? "red" : "white"} transparent opacity={0.2} />
|
||||
</mesh>
|
||||
</TransformControls>
|
||||
|
||||
{spawned.map(({ id, position, materialType, ref }) => (
|
||||
<RigidBody
|
||||
|
||||
@@ -6,16 +6,16 @@ function PhysicsSimulator() {
|
||||
return (
|
||||
<>
|
||||
|
||||
<MaterialSpawner
|
||||
position={[-2, 5, 3]}
|
||||
spawnInterval={1000}
|
||||
spawnCount={5}
|
||||
/>
|
||||
{/* <MaterialSpawner
|
||||
position={[6, 3, 6]}
|
||||
position={[1, 3, 4]}
|
||||
spawnInterval={1000}
|
||||
spawnCount={5}
|
||||
spawnCount={50}
|
||||
/> */}
|
||||
<MaterialSpawner
|
||||
position={[3.8, 3, 3]}
|
||||
spawnInterval={1000}
|
||||
spawnCount={50}
|
||||
/>
|
||||
{/* <MaterialSpawner
|
||||
position={[6, 3, -6]}
|
||||
spawnInterval={1000}
|
||||
@@ -24,7 +24,7 @@ function PhysicsSimulator() {
|
||||
|
||||
<ColliderCreator />
|
||||
|
||||
<SplineCreator />
|
||||
{/* <SplineCreator /> */}
|
||||
</>
|
||||
)
|
||||
}
|
||||
|
||||
@@ -75,8 +75,8 @@ export default function Scene({ layout }: { readonly layout: 'Main Layout' | 'Co
|
||||
>
|
||||
<Setup />
|
||||
<Collaboration />
|
||||
{/* <Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} debug > */}
|
||||
<Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} >
|
||||
<Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} debug >
|
||||
{/* <Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} > */}
|
||||
<Builder />
|
||||
|
||||
<Simulation />
|
||||
|
||||
@@ -181,6 +181,7 @@ const DisplayZone: React.FC<DisplayZoneProps> = ({
|
||||
// setSelectedChartId(null);
|
||||
|
||||
let response = await getSelect2dZoneData(zoneUuid, organization, projectId, selectedVersion?.versionId || '');
|
||||
console.log('response: ', response);
|
||||
|
||||
//
|
||||
let res = await getFloatingZoneData(zoneUuid, organization, projectId, selectedVersion?.versionId || '');
|
||||
|
||||
Reference in New Issue
Block a user