feat: Enhance conveyor collider functionality with direction toggle and visual indicators

This commit is contained in:
2025-08-19 10:19:18 +05:30
parent 361480578a
commit 7794e51d1f
9 changed files with 684 additions and 258 deletions

View File

@@ -6,8 +6,8 @@ import RenameInput from "../../../../../ui/inputs/RenameInput";
import LabledDropdown from "../../../../../ui/inputs/LabledDropdown";
import Trigger from "../trigger/Trigger";
import ActionsList from "../components/ActionsList";
import WorkerAction from "../actions/workerAction";
import AssemblyAction from "../actions/assemblyAction";
import WorkerAction from "../actions/WorkerAction";
import AssemblyAction from "../actions/AssemblyAction";
import { useSelectedEventData, useSelectedAction } from "../../../../../../store/simulation/useSimulationStore";
import { upsertProductOrEventApi } from "../../../../../../services/simulation/products/UpsertProductOrEventApi";

View File

@@ -2,45 +2,51 @@ import * as THREE from 'three';
import NormalConveyorCollider from './types/normalConveyorCollider';
import CurvedConveyorCollider from './types/curvedConveyorCollider';
import YSplitConveyorCollider from './types/ySplitConveyorCollider';
import { useState } from 'react';
function RibbonCollider({ ribbonData, boundingBox, asset }: {
function RibbonCollider({
ribbonData,
boundingBox,
asset
}: {
ribbonData: ConveyorPoints,
boundingBox: THREE.Box3 | null,
asset: Asset,
}) {
// console.log('ribbonData: ', ribbonData);
const [forward, setForward] = useState(false);
return (
<>
{ribbonData.type === 'normal' &&
{ribbonData.type === 'normal' && (
<NormalConveyorCollider
points={ribbonData.points}
boundingBox={boundingBox}
asset={asset}
forward={false}
forward={forward}
isPaused={false}
onDirectionChange={setForward}
/>
}
{ribbonData.type === 'curved' &&
)}
{ribbonData.type === 'curved' && (
<CurvedConveyorCollider
points={ribbonData.points}
boundingBox={boundingBox}
asset={asset}
forward={false}
forward={forward}
isPaused={false}
/>
}
{ribbonData.type === 'y-Split' &&
)}
{ribbonData.type === 'y-Split' && (
<YSplitConveyorCollider
points={ribbonData.points}
boundingBox={boundingBox}
asset={asset}
forward={false}
forward={forward}
isPaused={false}
/>
}
)}
</>
);
}
export default RibbonCollider;
export default RibbonCollider;

View File

@@ -3,195 +3,360 @@ import { CollisionPayload, RigidBody } from '@react-three/rapier';
import { useEffect, useMemo, useRef, useState } from 'react';
import { useFrame } from '@react-three/fiber';
function CurvedConveyorCollider({ points, boundingBox, asset, forward, isPaused }: {
points: [number, number, number][][],
boundingBox: THREE.Box3 | null,
asset: Asset,
forward: boolean
isPaused: boolean
function CurvedConveyorCollider({
points,
boundingBox,
asset,
forward: initialForward,
isPaused,
}: {
points: [number, number, number][][];
boundingBox: THREE.Box3 | null;
asset: Asset;
forward: boolean;
isPaused: boolean;
}) {
const conveyorRef = useRef<any>(null);
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
const conveyorSpeed = 2;
const [geometryKey, setGeometryKey] = useState(0);
const conveyorRef = useRef<any>(null);
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
const [forward, setForward] = useState(initialForward);
const [showDirection, setShowDirection] = useState(false);
const [hoverState, setHoverState] = useState(false);
const conveyorSpeed = 2;
const lastClickTime = useRef(0);
const arrowRefs = useRef<THREE.Group[]>([]);
const [geometryKey, setGeometryKey] = useState(0);
useEffect(() => {
if (!boundingBox) return;
const size = boundingBox.getSize(new THREE.Vector3());
const [width, depth] = [size.x, size.z];
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
conveyorDirection.current.applyEuler(rotation);
}, [boundingBox, asset.rotation]);
const handleMaterialEnter = (e: CollisionPayload) => {
if (e.other.rigidBody) {
setObjectsOnConveyor(prev => {
const newSet = new Set(prev);
newSet.add(e.other.rigidBody);
return newSet;
});
// Toggle direction on double right click
useEffect(() => {
const handleClick = (e: MouseEvent) => {
if (e.button === 2 && hoverState) { // Right click and hovering over conveyor
const now = Date.now();
if (now - lastClickTime.current < 300) {
console.log("log");
setForward(prev => !prev);
}
lastClickTime.current = now;
}
};
const handleMaterialExit = (e: CollisionPayload) => {
if (e.other.rigidBody) {
setObjectsOnConveyor(prev => {
const newSet = new Set(prev);
newSet.delete(e.other.rigidBody);
return newSet;
});
window.addEventListener('mousedown', handleClick);
return () => window.removeEventListener('mousedown', handleClick);
}, [forward, hoverState]);
useEffect(() => {
if (!boundingBox) return;
const size = boundingBox.getSize(new THREE.Vector3());
const [width, depth] = [size.x, size.z];
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
conveyorDirection.current.applyEuler(rotation);
}, [boundingBox, asset.rotation, forward]);
const handleMaterialEnter = (e: CollisionPayload) => {
if (e.other.rigidBody) {
setObjectsOnConveyor(prev => {
const newSet = new Set(prev);
newSet.add(e.other.rigidBody);
return newSet;
});
}
};
const handleMaterialExit = (e: CollisionPayload) => {
if (e.other.rigidBody) {
setObjectsOnConveyor(prev => {
const newSet = new Set(prev);
newSet.delete(e.other.rigidBody);
return newSet;
});
}
};
const bezierPoints = useMemo(() => {
const segments = 20;
const allPoints: THREE.Vector3[] = [];
points.forEach(segment => {
let vectorPoints = segment.map(p => new THREE.Vector3(...p));
if (!forward) vectorPoints.reverse();
for (let group = 0; group + 2 < vectorPoints.length; group += 2) {
const p0 = vectorPoints[group];
const p1 = vectorPoints[group + 1];
const p2 = vectorPoints[group + 2];
for (let i = 0; i <= segments; i++) {
const t = i / segments;
const point = new THREE.Vector3()
.copy(p0)
.multiplyScalar((1 - t) ** 2)
.addScaledVector(p1, 2 * (1 - t) * t)
.addScaledVector(p2, t ** 2);
allPoints.push(point);
}
};
const bezierPoints = useMemo(() => {
const segments = 20;
const allPoints: THREE.Vector3[] = [];
points.forEach(segment => {
let vectorPoints = segment.map(p => new THREE.Vector3(...p));
if (!forward) vectorPoints.reverse();
for (let group = 0; group + 2 < vectorPoints.length; group += 2) {
const p0 = vectorPoints[group];
const p1 = vectorPoints[group + 1];
const p2 = vectorPoints[group + 2];
for (let i = 0; i <= segments; i++) {
const t = i / segments;
const point = new THREE.Vector3()
.copy(p0)
.multiplyScalar((1 - t) ** 2)
.addScaledVector(p1, 2 * (1 - t) * t)
.addScaledVector(p2, t ** 2);
allPoints.push(point);
}
}
});
return allPoints;
}, [points, forward]);
useFrame(() => {
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
const inverseQuat = assetQuat.clone().invert();
objectsOnConveyor.forEach(rigidBody => {
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
let closestIndex = 0;
let minDist = Infinity;
for (let i = 0; i < bezierPoints.length; i++) {
const dist = bezierPoints[i].distanceToSquared(localPos);
if (dist < minDist) {
minDist = dist;
closestIndex = i;
}
}
const point = bezierPoints[closestIndex];
const prev = bezierPoints[closestIndex - 1] || point;
const next = bezierPoints[closestIndex + 1] || point;
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const relative = new THREE.Vector3().subVectors(localPos, point);
const sideOffset = relative.dot(side);
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
rigidBody.setLinvel(totalForce, true);
});
}
});
const geometries = useMemo(() => {
const width = 1;
const segments = 20;
const geos: THREE.BufferGeometry[] = [];
return allPoints;
}, [points, forward]);
points.forEach(segment => {
const vertices: number[] = [];
const indices: number[] = [];
useFrame(({ clock }) => {
if (isPaused) return;
// Physics simulation
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
const inverseQuat = assetQuat.clone().invert();
const vectorPoint = segment.map(p => new THREE.Vector3(...p));
if (vectorPoint.length < 3) return;
objectsOnConveyor.forEach(rigidBody => {
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
for (let group = 0; group + 2 < vectorPoint.length; group += 2) {
const p0 = vectorPoint[group];
const p1 = vectorPoint[group + 1];
const p2 = vectorPoint[group + 2];
let closestIndex = 0;
let minDist = Infinity;
for (let i = 0; i < bezierPoints.length; i++) {
const dist = bezierPoints[i].distanceToSquared(localPos);
if (dist < minDist) {
minDist = dist;
closestIndex = i;
}
}
for (let i = 0; i <= segments; i++) {
const t = i / segments;
const point = new THREE.Vector3()
.copy(p0)
.multiplyScalar((1 - t) ** 2)
.addScaledVector(p1, 2 * (1 - t) * t)
.addScaledVector(p2, t ** 2);
const point = bezierPoints[closestIndex];
const prev = bezierPoints[closestIndex - 1] || point;
const next = bezierPoints[closestIndex + 1] || point;
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
const tangent = new THREE.Vector3()
.copy(p0)
.multiplyScalar(-2 * (1 - t))
.addScaledVector(p1, 2 - 4 * t)
.addScaledVector(p2, 2 * t)
.normalize();
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const relative = new THREE.Vector3().subVectors(localPos, point);
const sideOffset = relative.dot(side);
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const left = new THREE.Vector3().copy(point).addScaledVector(normal, -width / 2);
const right = new THREE.Vector3().copy(point).addScaledVector(normal, width / 2);
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
vertices.push(...left.toArray(), ...right.toArray());
}
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
rigidBody.setLinvel(totalForce, true);
});
// Arrow animations
if (showDirection && arrowRefs.current.length > 0) {
const elapsedTime = clock.getElapsedTime();
arrowRefs.current.forEach((arrowGroup, index) => {
// Pulse animation
const pulseScale = 0.9 + 0.1 * Math.sin(elapsedTime * 5 + index * 0.5);
arrowGroup.scale.setScalar(pulseScale);
// Flow animation (color intensity)
const intensity = 0.7 + 0.3 * Math.sin(elapsedTime * 3 + index * 0.3);
arrowGroup.children.forEach(child => {
if (child instanceof THREE.Mesh) {
const material = child.material as THREE.MeshBasicMaterial;
if (forward) {
material.color.setRGB(0, intensity, 0);
} else {
material.color.setRGB(intensity, 0, 0);
}
const totalSegments = ((vectorPoint.length - 1) / 2) * segments;
for (let i = 0; i < totalSegments; i++) {
const base = i * 2;
indices.push(base, base + 1, base + 2);
indices.push(base + 1, base + 3, base + 2);
}
const ribbonGeometry = new THREE.BufferGeometry();
ribbonGeometry.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3));
ribbonGeometry.setIndex(indices);
ribbonGeometry.computeVertexNormals();
geos.push(ribbonGeometry);
}
});
});
}
});
setGeometryKey(k => k + 1);
return geos;
}, [points, asset.position, asset.rotation]);
const geometries = useMemo(() => {
const width = 1;
const segments = 20;
const geos: THREE.BufferGeometry[] = [];
return (
<>
{geometries.length > 0 && (
<RigidBody
key={geometryKey}
ref={conveyorRef}
type="fixed"
position={[0, 0.001, 0]}
userData={{ isConveyor: true }}
onCollisionEnter={handleMaterialEnter}
onCollisionExit={handleMaterialExit}
colliders="trimesh"
>
{geometries.map((geometry, index) => (
<mesh key={index} geometry={geometry}>
<meshStandardMaterial color="skyblue" side={THREE.DoubleSide} transparent opacity={0.5} visible={false}/>
</mesh>
))}
</RigidBody>
)}
</>
);
points.forEach(segment => {
const vertices: number[] = [];
const indices: number[] = [];
const vectorPoint = segment.map(p => new THREE.Vector3(...p));
if (vectorPoint.length < 3) return;
for (let group = 0; group + 2 < vectorPoint.length; group += 2) {
const p0 = vectorPoint[group];
const p1 = vectorPoint[group + 1];
const p2 = vectorPoint[group + 2];
for (let i = 0; i <= segments; i++) {
const t = i / segments;
const point = new THREE.Vector3()
.copy(p0)
.multiplyScalar((1 - t) ** 2)
.addScaledVector(p1, 2 * (1 - t) * t)
.addScaledVector(p2, t ** 2);
const tangent = new THREE.Vector3()
.copy(p0)
.multiplyScalar(-2 * (1 - t))
.addScaledVector(p1, 2 - 4 * t)
.addScaledVector(p2, 2 * t)
.normalize();
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const left = new THREE.Vector3().copy(point).addScaledVector(normal, -width / 2);
const right = new THREE.Vector3().copy(point).addScaledVector(normal, width / 2);
vertices.push(...left.toArray(), ...right.toArray());
}
}
const totalSegments = ((vectorPoint.length - 1) / 2) * segments;
for (let i = 0; i < totalSegments; i++) {
const base = i * 2;
indices.push(base, base + 1, base + 2);
indices.push(base + 1, base + 3, base + 2);
}
const ribbonGeometry = new THREE.BufferGeometry();
ribbonGeometry.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3));
ribbonGeometry.setIndex(indices);
ribbonGeometry.computeVertexNormals();
geos.push(ribbonGeometry);
});
setGeometryKey(k => k + 1);
return geos;
}, [points, asset.position, asset.rotation]);
// Create curved direction indicators
const directionArrows = useMemo(() => {
if (!showDirection) return null;
const arrows: THREE.Group[] = [];
const arrowHeight = 0.2;
const arrowRadius = 0.05;
const segments = 8; // Fewer arrows for curved conveyors
points.forEach(segment => {
let vectorPoints = segment.map(p => new THREE.Vector3(...p));
if (!forward) vectorPoints.reverse();
for (let group = 0; group + 2 < vectorPoints.length; group += 2) {
const p0 = vectorPoints[group];
const p1 = vectorPoints[group + 1];
const p2 = vectorPoints[group + 2];
for (let i = 0; i <= segments; i++) {
const t = i / segments;
const point = new THREE.Vector3()
.copy(p0)
.multiplyScalar((1 - t) ** 2)
.addScaledVector(p1, 2 * (1 - t) * t)
.addScaledVector(p2, t ** 2);
const tangent = new THREE.Vector3()
.copy(p0)
.multiplyScalar(-2 * (1 - t))
.addScaledVector(p1, 2 - 4 * t)
.addScaledVector(p2, 2 * t)
.normalize();
// Create arrow group
const arrowGroup = new THREE.Group();
// Arrow shaft (cylinder)
const shaftLength = arrowHeight * 0.7;
const shaftGeometry = new THREE.CylinderGeometry(arrowRadius * 0.3, arrowRadius * 0.3, shaftLength, 8);
const shaftMaterial = new THREE.MeshBasicMaterial({
color: forward ? 0x00ff00 : 0xff0000
});
const shaft = new THREE.Mesh(shaftGeometry, shaftMaterial);
shaft.position.y = shaftLength / 2;
shaft.rotation.x = Math.PI / 2;
// Arrow head (cone)
const headGeometry = new THREE.ConeGeometry(arrowRadius, arrowHeight * 0.3, 8);
const headMaterial = new THREE.MeshBasicMaterial({
color: forward ? 0x00ff00 : 0xff0000
});
const head = new THREE.Mesh(headGeometry, headMaterial);
head.position.y = shaftLength;
// Position and orient the entire arrow
arrowGroup.add(shaft);
arrowGroup.add(head);
arrowGroup.position.copy(point);
arrowGroup.position.y += 0.1; // Slightly above conveyor
arrowGroup.quaternion.setFromUnitVectors(
new THREE.Vector3(0, 1, 0),
new THREE.Vector3(tangent.x, 0.1, tangent.z)
);
arrows.push(arrowGroup);
}
}
});
arrowRefs.current = arrows;
return arrows;
}, [points, showDirection, forward]);
return (
<group
onPointerOver={() => {
setShowDirection(true);
setHoverState(true);
}}
onPointerOut={() => {
setShowDirection(false);
setHoverState(false);
}}
>
{/* Conveyor surface */}
{geometries.length > 0 && (
<RigidBody
key={geometryKey}
ref={conveyorRef}
type="fixed"
position={[0, 0.001, 0]}
userData={{ isConveyor: true }}
onCollisionEnter={handleMaterialEnter}
onCollisionExit={handleMaterialExit}
colliders="trimesh"
>
{geometries.map((geometry, index) => (
<mesh key={index} geometry={geometry}>
<meshStandardMaterial
color={forward ? "#64b5f6" : "#f48fb1"}
side={THREE.DoubleSide}
transparent
opacity={0.7}
/>
</mesh>
))}
</RigidBody>
)}
{/* Direction indicators */}
{showDirection && directionArrows?.map((arrow, i) => (
<primitive key={`arrow-${i}`} object={arrow} />
))}
{/* Hover highlight */}
{hoverState && (
<group>
{geometries.map((geometry, index) => (
<mesh
key={`highlight-${index}`}
geometry={geometry}
position={[0, 0.002, 0]} // Slightly above conveyor
>
<meshBasicMaterial
color={forward ? "#00ff0044" : "#ff000044"}
transparent
opacity={0.3}
/>
</mesh>
))}
</group>
)}
</group>
);
}
export default CurvedConveyorCollider;
export default CurvedConveyorCollider;

View File

@@ -9,27 +9,49 @@ function NormalConveyorCollider({
asset,
forward,
isPaused,
onDirectionChange
}: {
points: [number, number, number][][];
boundingBox: THREE.Box3 | null;
asset: Asset;
forward: boolean;
isPaused: boolean;
onDirectionChange?: (newDirection: boolean) => void;
}) {
const conveyorRefs = useRef<any[]>([]);
const conveyorRefs = useRef<(any)[]>([]);
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
const [showDirection, setShowDirection] = useState(false);
const conveyorSpeed = 2;
const lastClickTime = useRef(0);
const [hoverState, setHoverState] = useState(false);
// Toggle direction on double right click
useEffect(() => {
const handleClick = (e: MouseEvent) => {
if (e.button === 2) { // Right click
const now = Date.now();
if (now - lastClickTime.current < 300) { // Double click within 300ms
if (onDirectionChange) {
onDirectionChange(!forward);
}
}
lastClickTime.current = now;
}
};
window.addEventListener('mousedown', handleClick);
return () => window.removeEventListener('mousedown', handleClick);
}, [forward]);
useEffect(() => {
if (!boundingBox) return;
const size = boundingBox.getSize(new THREE.Vector3());
const [width, depth] = [size.x, size.z];
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
conveyorDirection.current.applyEuler(rotation);
}, [boundingBox, asset.rotation]);
}, [boundingBox, asset.rotation, forward]);
const handleMaterialEnter = (e: CollisionPayload) => {
if (e.other.rigidBody) {
@@ -52,6 +74,8 @@ function NormalConveyorCollider({
};
useFrame(() => {
if (isPaused) return;
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
@@ -60,7 +84,6 @@ function NormalConveyorCollider({
const allCurvePoints: THREE.Vector3[] = [];
const segmentCurves: THREE.Vector3[][] = [];
// Build all curve points across segments
points.forEach(segment => {
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
const curvePoints = curve.getPoints((segment.length - 1) * 30);
@@ -74,7 +97,6 @@ function NormalConveyorCollider({
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
// Find closest point on full conveyor
let closestIndex = 0;
let minDist = Infinity;
for (let i = 0; i < allCurvePoints.length; i++) {
@@ -91,12 +113,11 @@ function NormalConveyorCollider({
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const relative = new THREE.Vector3().subVectors(localPos, point);
const sideOffset = relative.dot(side);
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
rigidBody.setLinvel(totalForce, true);
});
@@ -107,7 +128,6 @@ function NormalConveyorCollider({
const segments = 30;
return points.map(segment => {
if (segment.length < 2) return null;
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
const curvePoints = curve.getPoints((segment.length - 1) * segments);
const vertices: number[] = [];
@@ -117,13 +137,10 @@ function NormalConveyorCollider({
const point = curvePoints[i];
const prev = curvePoints[i - 1] || point;
const next = curvePoints[i + 1] || point;
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const left = point.clone().addScaledVector(normal, -width / 2);
const right = point.clone().addScaledVector(normal, width / 2);
vertices.push(...left.toArray(), ...right.toArray());
}
@@ -138,11 +155,48 @@ function NormalConveyorCollider({
geo.setIndex(indices);
geo.computeVertexNormals();
return geo;
}).filter(Boolean);
}).filter((geo): geo is THREE.BufferGeometry => geo !== null);
}, [points, asset.position, asset.rotation]);
// Create direction indicators
const directionArrows = useMemo(() => {
if (!showDirection) return null;
const arrows: THREE.Mesh[] = [];
const arrowGeometry = new THREE.ConeGeometry(0.05, 0.2, 8);
const arrowMaterial = new THREE.MeshBasicMaterial({ color: forward ? 0x00ff00 : 0xff0000 });
points.forEach(segment => {
if (segment.length < 2) return;
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
const curvePoints = curve.getPoints(10); // Fewer points for arrows
for (let i = 0; i < curvePoints.length; i++) {
const point = curvePoints[i];
const next = curvePoints[i + 1] || point;
const direction = new THREE.Vector3().subVectors(next, point).normalize();
const arrow = new THREE.Mesh(arrowGeometry, arrowMaterial);
arrow.position.copy(point);
arrow.quaternion.setFromUnitVectors(
new THREE.Vector3(0, forward ? 1 : -1, 0),
new THREE.Vector3(direction.x, 0.1, direction.z)
);
arrows.push(arrow);
//
}
});
return arrows;
}, [points, showDirection, forward]);
return (
<>
<group
onPointerEnter={() => { setShowDirection(true); setHoverState(true); }}
onPointerLeave={() => { setShowDirection(false); setHoverState(false); }}
>
{geometries.map((geometry, index) => (
<RigidBody
key={index}
@@ -153,15 +207,45 @@ function NormalConveyorCollider({
onCollisionEnter={handleMaterialEnter}
onCollisionExit={handleMaterialExit}
colliders="trimesh"
// visible={false}
>
<mesh geometry={geometry!}>
<meshStandardMaterial color="skyblue" side={THREE.DoubleSide} transparent opacity={0.5} visible={false} />
<mesh geometry={geometry}>
<meshStandardMaterial
color={forward ? "skyblue" : "pink"}
side={THREE.DoubleSide}
transparent
opacity={0.5}
/>
</mesh>
</RigidBody>
))}
</>
{showDirection && directionArrows?.map((arrow, i) => (
<primitive
key={`arrow-${i}`}
object={arrow}
/>
))}
{/* Hover highlight */}
{hoverState && (
<group>
{geometries.map((geometry, index) => (
<mesh
key={`highlight-${index}`}
geometry={geometry}
position={[0, 0.002, 0]} // Slightly above conveyor
>
<meshBasicMaterial
color={forward ? "#00ff0044" : "#ff000044"}
transparent
opacity={0.3}
/>
</mesh>
))}
</group>
)}
</group>
);
}
export default NormalConveyorCollider;
export default NormalConveyorCollider;

View File

@@ -3,33 +3,61 @@ import { CollisionPayload, RigidBody } from '@react-three/rapier';
import { useEffect, useMemo, useRef, useState } from 'react';
import { useFrame } from '@react-three/fiber';
function YSplitConveyorCollider({
points,
boundingBox,
asset,
forward,
isPaused,
}: {
interface YSplitConveyorColliderProps {
points: [number, number, number][][];
boundingBox: THREE.Box3 | null;
asset: Asset;
forward: boolean;
isPaused: boolean;
}) {
const conveyorRefs = useRef<any[]>([]);
onDirectionChange?: (newDirection: boolean) => void;
}
function YSplitConveyorCollider({
points,
boundingBox,
asset,
forward: initialForward,
isPaused,
onDirectionChange
}: YSplitConveyorColliderProps) {
const conveyorRefs = useRef<(any | null)[]>([]);
const [objectsOnConveyor, setObjectsOnConveyor] = useState<Set<any>>(new Set());
const conveyorDirection = useRef<THREE.Vector3>(new THREE.Vector3());
const [forward, setForward] = useState(initialForward);
const [showDirection, setShowDirection] = useState(false);
const [hoverState, setHoverState] = useState(false);
const conveyorSpeed = 2;
const lastClickTime = useRef(0);
const arrowRefs = useRef<THREE.Group[]>([]);
// Toggle direction on double right click
useEffect(() => {
const handleClick = (e: MouseEvent) => {
if (e.button === 2 && hoverState) { // Right click and hovering over conveyor
const now = Date.now();
if (now - lastClickTime.current < 300) { // Double click within 300ms
const newDirection = !forward;
setForward(newDirection);
if (onDirectionChange) {
onDirectionChange(newDirection);
}
}
lastClickTime.current = now;
}
};
window.addEventListener('mousedown', handleClick);
return () => window.removeEventListener('mousedown', handleClick);
}, [forward, hoverState, onDirectionChange]);
useEffect(() => {
if (!boundingBox) return;
const size = boundingBox.getSize(new THREE.Vector3());
const [width, depth] = [size.x, size.z];
conveyorDirection.current.set(width < depth ? 0 : 1, 0, width < depth ? 1 : 0);
const rotation = new THREE.Euler().fromArray(asset.rotation || [0, 0, 0]);
conveyorDirection.current.applyEuler(rotation);
}, [boundingBox, asset.rotation]);
}, [boundingBox, asset.rotation, forward]);
const handleMaterialEnter = (e: CollisionPayload) => {
if (e.other.rigidBody) {
@@ -51,21 +79,18 @@ function YSplitConveyorCollider({
}
};
useFrame(() => {
useFrame(({ clock }) => {
if (isPaused) return;
// Update physics
const assetPos = new THREE.Vector3(...(asset.position || [0, 0, 0]));
const assetRot = new THREE.Euler(...(asset.rotation || [0, 0, 0]));
const assetQuat = new THREE.Quaternion().setFromEuler(assetRot);
const inverseQuat = assetQuat.clone().invert();
const allCurvePoints: THREE.Vector3[] = [];
const segmentCurves: THREE.Vector3[][] = [];
// Build all curve points across segments
points.forEach(segment => {
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
const curvePoints = curve.getPoints((segment.length - 1) * 30);
segmentCurves.push(curvePoints);
allCurvePoints.push(...curvePoints);
allCurvePoints.push(...curve.getPoints((segment.length - 1) * 30));
});
if (!forward) allCurvePoints.reverse();
@@ -74,7 +99,6 @@ function YSplitConveyorCollider({
const worldPos = new THREE.Vector3().copy(rigidBody.translation());
const localPos = worldPos.clone().sub(assetPos).applyQuaternion(inverseQuat);
// Find closest point on full conveyor
let closestIndex = 0;
let minDist = Infinity;
for (let i = 0; i < allCurvePoints.length; i++) {
@@ -91,15 +115,37 @@ function YSplitConveyorCollider({
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
const side = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const relative = new THREE.Vector3().subVectors(localPos, point);
const sideOffset = relative.dot(side);
const centeringForce = side.clone().multiplyScalar(-sideOffset * 10);
const forwardForce = tangent.clone().multiplyScalar(conveyorSpeed);
const totalForce = forwardForce.add(centeringForce).applyQuaternion(assetQuat);
rigidBody.setAngvel({ x: 0, y: 0, z: 0 }, true);
rigidBody.setLinvel(totalForce, true);
});
// Animate direction arrows
if (showDirection && arrowRefs.current.length > 0) {
const elapsedTime = clock.getElapsedTime();
arrowRefs.current.forEach((arrowGroup, index) => {
// Pulse animation
const pulseScale = 0.9 + 0.1 * Math.sin(elapsedTime * 5 + index * 0.5);
arrowGroup.scale.setScalar(pulseScale);
// Flow animation (color intensity)
const intensity = 0.7 + 0.3 * Math.sin(elapsedTime * 3 + index * 0.3);
arrowGroup.children.forEach(child => {
if (child instanceof THREE.Mesh) {
const material = child.material as THREE.MeshBasicMaterial;
if (forward) {
material.color.setRGB(0, intensity, 0);
} else {
material.color.setRGB(intensity, 0, 0);
}
}
});
});
}
});
const geometries = useMemo(() => {
@@ -107,7 +153,6 @@ function YSplitConveyorCollider({
const segments = 30;
return points.map(segment => {
if (segment.length < 2) return null;
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
const curvePoints = curve.getPoints((segment.length - 1) * segments);
const vertices: number[] = [];
@@ -117,13 +162,10 @@ function YSplitConveyorCollider({
const point = curvePoints[i];
const prev = curvePoints[i - 1] || point;
const next = curvePoints[i + 1] || point;
const tangent = new THREE.Vector3().subVectors(next, prev).normalize();
const normal = new THREE.Vector3().crossVectors(tangent, new THREE.Vector3(0, 1, 0)).normalize();
const left = point.clone().addScaledVector(normal, -width / 2);
const right = point.clone().addScaledVector(normal, width / 2);
vertices.push(...left.toArray(), ...right.toArray());
}
@@ -138,14 +180,82 @@ function YSplitConveyorCollider({
geo.setIndex(indices);
geo.computeVertexNormals();
return geo;
}).filter(Boolean);
}).filter((geo): geo is THREE.BufferGeometry => geo !== null);
}, [points, asset.position, asset.rotation]);
// Create direction indicators
const directionArrows = useMemo(() => {
if (!showDirection) return null;
const arrows: THREE.Group[] = [];
const arrowHeight = 0.2;
const arrowRadius = 0.05;
points.forEach(segment => {
if (segment.length < 2) return;
const curve = new THREE.CatmullRomCurve3(segment.map(p => new THREE.Vector3(...p)));
const curvePoints = curve.getPoints(8); // Fewer points for arrows
for (let i = 0; i < curvePoints.length; i++) {
const point = curvePoints[i];
const next = curvePoints[i + 1] || point;
const direction = new THREE.Vector3().subVectors(next, point).normalize();
// Create arrow group
const arrowGroup = new THREE.Group();
// Arrow shaft (cylinder)
const shaftLength = arrowHeight * 0.7;
const shaftGeometry = new THREE.CylinderGeometry(arrowRadius * 0.3, arrowRadius * 0.3, shaftLength, 8);
const shaftMaterial = new THREE.MeshBasicMaterial({
color: forward ? 0x00ff00 : 0xff0000
});
const shaft = new THREE.Mesh(shaftGeometry, shaftMaterial);
shaft.position.y = shaftLength / 2;
shaft.rotation.x = Math.PI / 2;
// Arrow head (cone)
const headGeometry = new THREE.ConeGeometry(arrowRadius, arrowHeight * 0.3, 8);
const headMaterial = new THREE.MeshBasicMaterial({
color: forward ? 0x00ff00 : 0xff0000
});
const head = new THREE.Mesh(headGeometry, headMaterial);
head.position.y = shaftLength;
// Position and orient the entire arrow
arrowGroup.add(shaft);
arrowGroup.add(head);
arrowGroup.position.copy(point);
arrowGroup.position.y += 0.1; // Slightly above conveyor
arrowGroup.quaternion.setFromUnitVectors(
new THREE.Vector3(0, 1, 0),
new THREE.Vector3(direction.x, 0.1, direction.z)
);
arrows.push(arrowGroup);
}
});
arrowRefs.current = arrows;
return arrows;
}, [points, showDirection, forward]);
return (
<>
<group
onPointerOver={() => {
setShowDirection(true);
setHoverState(true);
}}
onPointerOut={() => {
setShowDirection(false);
setHoverState(false);
}}
>
{/* Conveyor surface */}
{geometries.map((geometry, index) => (
<RigidBody
key={index}
key={`conveyor-${index}`}
ref={el => (conveyorRefs.current[index] = el)}
type="fixed"
position={[0, 0.001, 0]}
@@ -154,14 +264,45 @@ function YSplitConveyorCollider({
onCollisionExit={handleMaterialExit}
colliders="trimesh"
>
<mesh geometry={geometry!}>
<meshStandardMaterial color="skyblue" side={THREE.DoubleSide} transparent opacity={0.5} visible={false}/>
<mesh geometry={geometry}>
<meshStandardMaterial
color={forward ? "#64b5f6" : "#f48fb1"} // More subtle colors
side={THREE.DoubleSide}
transparent
opacity={0.7}
/>
</mesh>
</RigidBody>
))}
</>
{/* Direction indicators */}
{showDirection && directionArrows?.map((arrow, i) => (
<primitive
key={`arrow-${i}`}
object={arrow}
/>
))}
{/* Hover highlight */}
{hoverState && (
<group>
{geometries.map((geometry, index) => (
<mesh
key={`highlight-${index}`}
geometry={geometry}
position={[0, 0.002, 0]} // Slightly above conveyor
>
<meshBasicMaterial
color={forward ? "#00ff0044" : "#ff000044"}
transparent
opacity={0.3}
/>
</mesh>
))}
</group>
)}
</group>
);
}
export default YSplitConveyorCollider;
export default YSplitConveyorCollider;

View File

@@ -4,7 +4,7 @@ import { useLoadingProgress } from '../../../store/builder/store';
import { MaterialModel } from '../../simulation/materials/instances/material/materialModel';
import { useThree } from '@react-three/fiber';
import * as THREE from 'three';
import { CameraControls } from '@react-three/drei';
import { CameraControls, TransformControls } from '@react-three/drei';
import { generateUniqueId } from '../../../functions/generateUniqueId';
type MaterialSpawnerProps = {
@@ -13,7 +13,7 @@ type MaterialSpawnerProps = {
spawnCount: number;
};
function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawnerProps) {
function MaterialSpawner({ position: initialPos, spawnInterval, spawnCount }: MaterialSpawnerProps) {
const { loadingProgress } = useLoadingProgress();
const [spawned, setSpawned] = useState<{
id: string;
@@ -28,6 +28,9 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
const dragOffset = useRef<THREE.Vector3>(new THREE.Vector3());
const initialDepth = useRef<number>(0);
const materialTypes = ['Default material', 'Material 1', 'Material 2', 'Material 3'];
const [boxPosition, setBoxPosition] = useState<[number, number, number]>(initialPos);
const spawnerRef = useRef<THREE.Mesh>(null!);
const newPositionRef = useRef<[number, number, number]>([...initialPos]);
useEffect(() => {
if (loadingProgress !== 0) return;
@@ -46,13 +49,16 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
}
spawnedCount.current++;
const randomMaterialType = materialTypes[Math.floor(Math.random() * materialTypes.length)];
const randomMaterialType =
materialTypes[Math.floor(Math.random() * materialTypes.length)];
console.log('boxPosition: ', boxPosition);
return [
...prev,
{
id: generateUniqueId(),
position,
position: [...boxPosition] as [number, number, number], // use latest position state
ref: React.createRef<RapierRigidBody>(),
materialType: randomMaterialType,
}
@@ -85,7 +91,9 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
stopSpawning();
document.removeEventListener('visibilitychange', handleVisibility);
};
}, [loadingProgress, spawnInterval, spawnCount, position, spawningPaused]);
}, [loadingProgress, spawnInterval, spawnCount, spawningPaused, boxPosition]);
const handleSleep = (id: string) => {
setSpawned(prev => prev.filter(obj => obj.id !== id));
@@ -180,16 +188,37 @@ function MaterialSpawner({ position, spawnInterval, spawnCount }: MaterialSpawne
const handleBoxContextMenu = () => {
};
return (
<>
<mesh
position={position}
onClick={handleBoxClick}
onContextMenu={handleBoxContextMenu}
<TransformControls
position={boxPosition}
scale={[0.5, 0.5, 0.5]}
onMouseDown={() => {
if (controls) (controls as CameraControls).enabled = false;
}}
onMouseUp={() => {
if (controls) (controls as CameraControls).enabled = true;
setBoxPosition(newPositionRef.current);
}}
onObjectChange={() => {
if (spawnerRef.current) {
const pos = spawnerRef.current.position;
newPositionRef.current = [pos.x, pos.y, pos.z]; // Save latest
}
}}
>
<boxGeometry args={[1, 1, 1]} />
<meshStandardMaterial color={spawningPaused ? "red" : "white"} transparent opacity={0.2} />
</mesh>
<mesh
ref={spawnerRef}
// position={boxPosition}
onClick={handleBoxClick}
// onContextMenu={handleBoxContextMenu}
>
<boxGeometry args={[1, 1, 1]} />
<meshStandardMaterial color={spawningPaused ? "red" : "white"} transparent opacity={0.2} />
</mesh>
</TransformControls>
{spawned.map(({ id, position, materialType, ref }) => (
<RigidBody

View File

@@ -6,16 +6,16 @@ function PhysicsSimulator() {
return (
<>
<MaterialSpawner
position={[-2, 5, 3]}
spawnInterval={1000}
spawnCount={5}
/>
{/* <MaterialSpawner
position={[6, 3, 6]}
position={[1, 3, 4]}
spawnInterval={1000}
spawnCount={5}
spawnCount={50}
/> */}
<MaterialSpawner
position={[3.8, 3, 3]}
spawnInterval={1000}
spawnCount={50}
/>
{/* <MaterialSpawner
position={[6, 3, -6]}
spawnInterval={1000}
@@ -24,7 +24,7 @@ function PhysicsSimulator() {
<ColliderCreator />
<SplineCreator />
{/* <SplineCreator /> */}
</>
)
}

View File

@@ -75,8 +75,8 @@ export default function Scene({ layout }: { readonly layout: 'Main Layout' | 'Co
>
<Setup />
<Collaboration />
{/* <Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} debug > */}
<Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} >
<Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} debug >
{/* <Physics gravity={[0, -9.81, 0]} allowedLinearError={50} numSolverIterations={50} > */}
<Builder />
<Simulation />

View File

@@ -181,6 +181,7 @@ const DisplayZone: React.FC<DisplayZoneProps> = ({
// setSelectedChartId(null);
let response = await getSelect2dZoneData(zoneUuid, organization, projectId, selectedVersion?.versionId || '');
console.log('response: ', response);
//
let res = await getFloatingZoneData(zoneUuid, organization, projectId, selectedVersion?.versionId || '');