Dwinzo_dev/app/src/modules/IIOTTemp/RTSimulation/IIOTSimulation/ArmAnimator.tsx

283 lines
11 KiB
TypeScript
Raw Normal View History

import { useFrame, useThree } from '@react-three/fiber';
import React, { useEffect, useRef, useState } from 'react'
import * as THREE from "three";
import { useAnimationPlaySpeed } from '../../../../store/usePlayButtonStore';
type PointWithDegree = {
position: [number, number, number];
degree: number;
};
function ArmAnimator({ armBot, ikSolver, setIkSolver, targetBone, restPosition, path, assetName, data }: any) {
const { scene } = useThree();
const progressRef = useRef(0);
const curveRef = useRef<THREE.Vector3[] | null>(null);
const totalDistanceRef = useRef(0);
const startTimeRef = useRef<number | null>(null);
const segmentDistancesRef = useRef<number[]>([]);
const [currentPath, setCurrentPath] = useState<[number, number, number][]>([]);
const [circlePoints, setCirclePoints] = useState<[number, number, number][]>([]);
const [circlePointsWithDegrees, setCirclePointsWithDegrees] = useState<PointWithDegree[]>([]);
const [customCurvePoints, setCustomCurvePoints] = useState<THREE.Vector3[] | null>(null);
let curveHeight = 1.75
const CIRCLE_RADIUS = 1.6
const { speed } = useAnimationPlaySpeed();
let duration = 5000
const [isRunning, setIsRunning] = useState(false);
const lastPercentageRef = useRef<number>(0);
const targetPercentageRef = useRef<number>(0);
const interpolationStartTimeRef = useRef<number>(performance.now());
useEffect(() => {
setCurrentPath(path);
}, [path]);
// Handle circle points based on armBot position
useEffect(() => {
const points = generateRingPoints(CIRCLE_RADIUS, 64)
setCirclePoints(points);
}, [armBot.position]);
//Generate Circle Points
function generateRingPoints(radius: any, segments: any) {
const points: [number, number, number][] = [];
for (let i = 0; i < segments; i++) {
// Calculate angle for current segment
const angle = (i / segments) * Math.PI * 2;
// Calculate x and z coordinates (y remains the same for a flat ring)
const x = Math.cos(angle) * radius;
const z = Math.sin(angle) * radius;
points.push([x, 1.5, z]);
}
return points;
}
//Generate CirclePoints with Angle
function generateRingPointsWithDegrees(radius: number, segments: number, initialRotation: [number, number, number]) {
const points: { position: [number, number, number]; degree: number }[] = [];
for (let i = 0; i < segments; i++) {
const angleRadians = (i / segments) * Math.PI * 2;
const x = Math.cos(angleRadians) * radius;
const z = Math.sin(angleRadians) * radius;
const degree = (angleRadians * 180) / Math.PI; // Convert radians to degrees
points.push({
position: [x, 1.5, z],
degree,
});
}
return points;
}
// Handle circle points based on armBot position
useEffect(() => {
const points = generateRingPointsWithDegrees(CIRCLE_RADIUS, 64, armBot.rotation);
setCirclePointsWithDegrees(points)
}, [armBot.rotation]);
// Function for find nearest Circlepoints Index
const findNearestIndex = (nearestPoint: [number, number, number], points: [number, number, number][], epsilon = 1e-6) => {
for (let i = 0; i < points.length; i++) {
const [x, y, z] = points[i];
if (
Math.abs(x - nearestPoint[0]) < epsilon &&
Math.abs(y - nearestPoint[1]) < epsilon &&
Math.abs(z - nearestPoint[2]) < epsilon
) {
return i; // Found the matching index
}
}
return -1; // Not found
};
//function to find nearest Circlepoints
const findNearest = (target: [number, number, number]) => {
return circlePoints.reduce((nearest, point) => {
const distance = Math.hypot(target[0] - point[0], target[1] - point[1], target[2] - point[2]);
const nearestDistance = Math.hypot(target[0] - nearest[0], target[1] - nearest[1], target[2] - nearest[2]);
return distance < nearestDistance ? point : nearest;
}, circlePoints[0]);
};
// Helper function to collect points and check forbidden degrees
const collectArcPoints = (startIdx: number, endIdx: number, clockwise: boolean) => {
const totalSegments = 64;
const arcPoints: [number, number, number][] = [];
let i = startIdx;
while (i !== (endIdx + (clockwise ? 1 : -1) + totalSegments) % totalSegments) {
const { degree, position } = circlePointsWithDegrees[i];
// Skip over
arcPoints.push(position);
i = (i + (clockwise ? 1 : -1) + totalSegments) % totalSegments;
}
return arcPoints;
};
//Range to restrict angle
const hasForbiddenDegrees = (arc: [number, number, number][]) => {
return arc.some(p => {
const idx = findNearestIndex(p, circlePoints);
const degree = circlePointsWithDegrees[idx]?.degree || 0;
return degree >= 271 && degree <= 300; // Forbidden range: 271° to 300°
});
};
// Handle nearest points and final path (including arc points)
useEffect(() => {
if (circlePoints.length > 0 && currentPath.length > 0) {
const start = currentPath[0];
const end = currentPath[currentPath.length - 1];
const raisedStart = [start[0], start[1] + 0.5, start[2]] as [number, number, number];
const raisedEnd = [end[0], end[1] + 0.5, end[2]] as [number, number, number];
const nearestToStart = findNearest(raisedStart);
const nearestToEnd = findNearest(raisedEnd);
const indexOfNearestStart = findNearestIndex(nearestToStart, circlePoints);
const indexOfNearestEnd = findNearestIndex(nearestToEnd, circlePoints);
const totalSegments = 64;
const clockwiseDistance = (indexOfNearestEnd - indexOfNearestStart + totalSegments) % totalSegments;
const counterClockwiseDistance = (indexOfNearestStart - indexOfNearestEnd + totalSegments) % totalSegments;
// Try both directions
const arcClockwise = collectArcPoints(indexOfNearestStart, indexOfNearestEnd, true);
const arcCounterClockwise = collectArcPoints(indexOfNearestStart, indexOfNearestEnd, false);
const clockwiseForbidden = hasForbiddenDegrees(arcClockwise);
const counterClockwiseForbidden = hasForbiddenDegrees(arcCounterClockwise);
let arcPoints: [number, number, number][] = [];
if (!clockwiseForbidden && (clockwiseDistance <= counterClockwiseDistance || counterClockwiseForbidden)) {
arcPoints = arcClockwise;
} else {
arcPoints = arcCounterClockwise;
}
const pathVectors = [
new THREE.Vector3(start[0], start[1], start[2]),
new THREE.Vector3(start[0], curveHeight, start[2]),
new THREE.Vector3(nearestToStart[0], curveHeight, nearestToStart[2]),
...arcPoints.map(point => new THREE.Vector3(point[0], curveHeight, point[2])),
new THREE.Vector3(nearestToEnd[0], curveHeight, nearestToEnd[2]),
new THREE.Vector3(end[0], curveHeight, end[2]),
new THREE.Vector3(end[0], end[1], end[2])
];
const pathSegments: [THREE.Vector3, THREE.Vector3][] = [];
for (let i = 0; i < pathVectors.length - 1; i++) {
pathSegments.push([pathVectors[i], pathVectors[i + 1]]);
}
const segmentDistances = pathSegments.map(([p1, p2]) => p1.distanceTo(p2));
segmentDistancesRef.current = segmentDistances;
const totalDistance = segmentDistances.reduce((sum, d) => sum + d, 0);
totalDistanceRef.current = totalDistance;
setCustomCurvePoints(pathVectors);
}
}, [circlePoints, currentPath]);
// Frame update for animation
useFrame((state, delta) => {
if (!startTimeRef.current || !isRunning) return;
if (!ikSolver || !customCurvePoints || customCurvePoints.length === 0) return;
const bone = ikSolver.mesh.skeleton.bones.find((b: any) => b.name === targetBone);
if (!bone) return;
const now = performance.now();
const elapsed = now - interpolationStartTimeRef.current;
const duration = 2000;
const t = Math.min(elapsed / duration, 1);
const interpolatedPercentage =
lastPercentageRef.current +
(targetPercentageRef.current - lastPercentageRef.current) * t;
const progress = Math.min(interpolatedPercentage / 100, 1);
const distances = segmentDistancesRef.current;
const totalDistance = totalDistanceRef.current;
const coveredDistance = progress * totalDistance;
// console.log('coveredDistance: ', coveredDistance);
// Traverse segments to find current position
let index = 0;
let accumulatedDistance = 0;
while (index < distances.length && coveredDistance > accumulatedDistance + distances[index]) {
accumulatedDistance += distances[index];
index++;
}
if (index < distances.length) {
const startPoint = customCurvePoints[index];
const endPoint = customCurvePoints[index + 1];
const segmentDistance = distances[index];
const t = (coveredDistance - accumulatedDistance) / segmentDistance;
if (startPoint && endPoint) {
const position = startPoint.clone().lerp(endPoint, t);
bone.position.copy(position);
}
}
ikSolver.update();
// Reset at the end
if (progress >= 1) {
setCurrentPath([]);
setCustomCurvePoints([]);
curveRef.current = null;
progressRef.current = 0;
startTimeRef.current = null;
}
if (currentPath.length === 0 && bone) {
bone.position.copy(bone.position);
ikSolver.update();
}
});
useEffect(() => {
if (data.assetName !== assetName) return;
if (data.state === 'running' && data.percentage !== undefined) {
console.log('data.percentage: ', data.percentage);
if (data.percentage === 0) {
startTimeRef.current = performance.now();
lastPercentageRef.current = 0;
targetPercentageRef.current = 0
} else {
lastPercentageRef.current = targetPercentageRef.current;
}
targetPercentageRef.current = data.percentage;
interpolationStartTimeRef.current = performance.now();
setIsRunning(true);
} else {
setIsRunning(false);
}
}, [data, assetName]);
return (
<></>
)
}
export default ArmAnimator