Refactor Simulations, RenameTooltip, EditWidgetOption, and RoboticArmAnimator components: streamline imports, enhance UI elements, and improve event handling logic.
This commit is contained in:
@@ -1,220 +1,261 @@
|
||||
import React, { useEffect, useMemo, useRef, useState } from 'react';
|
||||
import { useFrame } from '@react-three/fiber';
|
||||
import * as THREE from 'three';
|
||||
import { Line } from '@react-three/drei';
|
||||
import React, { useEffect, useRef, useState } from "react";
|
||||
import { useFrame } from "@react-three/fiber";
|
||||
import * as THREE from "three";
|
||||
import { Line } from "@react-three/drei";
|
||||
import {
|
||||
useAnimationPlaySpeed,
|
||||
usePauseButtonStore,
|
||||
usePlayButtonStore,
|
||||
useResetButtonStore
|
||||
} from '../../../../../store/usePlayButtonStore';
|
||||
useAnimationPlaySpeed,
|
||||
usePauseButtonStore,
|
||||
usePlayButtonStore,
|
||||
useResetButtonStore,
|
||||
} from "../../../../../store/usePlayButtonStore";
|
||||
|
||||
function RoboticArmAnimator({
|
||||
HandleCallback,
|
||||
restPosition,
|
||||
ikSolver,
|
||||
targetBone,
|
||||
armBot,
|
||||
logStatus,
|
||||
path
|
||||
HandleCallback,
|
||||
restPosition,
|
||||
ikSolver,
|
||||
targetBone,
|
||||
armBot,
|
||||
logStatus,
|
||||
path,
|
||||
}: any) {
|
||||
const progressRef = useRef(0);
|
||||
const curveRef = useRef<THREE.Vector3[] | null>(null);
|
||||
const [currentPath, setCurrentPath] = useState<[number, number, number][]>([]);
|
||||
const [circlePoints, setCirclePoints] = useState<[number, number, number][]>([]);
|
||||
const [customCurvePoints, setCustomCurvePoints] = useState<THREE.Vector3[] | null>(null);
|
||||
const progressRef = useRef(0);
|
||||
const curveRef = useRef<THREE.Vector3[] | null>(null);
|
||||
const [currentPath, setCurrentPath] = useState<[number, number, number][]>(
|
||||
[]
|
||||
);
|
||||
const [circlePoints, setCirclePoints] = useState<[number, number, number][]>(
|
||||
[]
|
||||
);
|
||||
const [customCurvePoints, setCustomCurvePoints] = useState<
|
||||
THREE.Vector3[] | null
|
||||
>(null);
|
||||
|
||||
// Zustand stores
|
||||
const { isPlaying } = usePlayButtonStore();
|
||||
const { isPaused } = usePauseButtonStore();
|
||||
const { isReset } = useResetButtonStore();
|
||||
const { speed } = useAnimationPlaySpeed();
|
||||
// Zustand stores
|
||||
const { isPlaying } = usePlayButtonStore();
|
||||
const { isPaused } = usePauseButtonStore();
|
||||
const { isReset } = useResetButtonStore();
|
||||
const { speed } = useAnimationPlaySpeed();
|
||||
|
||||
// Update path state whenever `path` prop changes
|
||||
useEffect(() => {
|
||||
setCurrentPath(path);
|
||||
}, [path]);
|
||||
// Update path state whenever `path` prop changes
|
||||
useEffect(() => {
|
||||
setCurrentPath(path);
|
||||
}, [path]);
|
||||
|
||||
// Reset logic when `isPlaying` changes
|
||||
useEffect(() => {
|
||||
if (!isPlaying) {
|
||||
setCurrentPath([]);
|
||||
curveRef.current = null;
|
||||
}
|
||||
}, [isPlaying]);
|
||||
|
||||
// Handle circle points based on armBot position
|
||||
useEffect(() => {
|
||||
const points = generateRingPoints(1.6, 64)
|
||||
setCirclePoints(points);
|
||||
}, [armBot.position]);
|
||||
|
||||
|
||||
function generateRingPoints(radius: any, segments: any) {
|
||||
const points: [number, number, number][] = [];
|
||||
for (let i = 0; i < segments; i++) {
|
||||
// Calculate angle for current segment
|
||||
const angle = (i / segments) * Math.PI * 2;
|
||||
// Calculate x and z coordinates (y remains the same for a flat ring)
|
||||
const x = Math.cos(angle) * radius;
|
||||
const z = Math.sin(angle) * radius;
|
||||
points.push([x, 1.5, z]);
|
||||
}
|
||||
return points;
|
||||
// Reset logic when `isPlaying` changes
|
||||
useEffect(() => {
|
||||
if (!isPlaying) {
|
||||
setCurrentPath([]);
|
||||
curveRef.current = null;
|
||||
}
|
||||
}, [isPlaying]);
|
||||
|
||||
const findNearestIndex = (nearestPoint: [number, number, number], points: [number, number, number][], epsilon = 1e-6) => {
|
||||
for (let i = 0; i < points.length; i++) {
|
||||
const [x, y, z] = points[i];
|
||||
if (
|
||||
Math.abs(x - nearestPoint[0]) < epsilon &&
|
||||
Math.abs(y - nearestPoint[1]) < epsilon &&
|
||||
Math.abs(z - nearestPoint[2]) < epsilon
|
||||
) {
|
||||
return i; // Found the matching index
|
||||
}
|
||||
// Handle circle points based on armBot position
|
||||
useEffect(() => {
|
||||
const points = generateRingPoints(1.6, 64);
|
||||
setCirclePoints(points);
|
||||
}, [armBot.position]);
|
||||
|
||||
function generateRingPoints(radius: any, segments: any) {
|
||||
const points: [number, number, number][] = [];
|
||||
for (let i = 0; i < segments; i++) {
|
||||
// Calculate angle for current segment
|
||||
const angle = (i / segments) * Math.PI * 2;
|
||||
// Calculate x and z coordinates (y remains the same for a flat ring)
|
||||
const x = Math.cos(angle) * radius;
|
||||
const z = Math.sin(angle) * radius;
|
||||
points.push([x, 1.5, z]);
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
const findNearestIndex = (
|
||||
nearestPoint: [number, number, number],
|
||||
points: [number, number, number][],
|
||||
epsilon = 1e-6
|
||||
) => {
|
||||
for (let i = 0; i < points.length; i++) {
|
||||
const [x, y, z] = points[i];
|
||||
if (
|
||||
Math.abs(x - nearestPoint[0]) < epsilon &&
|
||||
Math.abs(y - nearestPoint[1]) < epsilon &&
|
||||
Math.abs(z - nearestPoint[2]) < epsilon
|
||||
) {
|
||||
return i; // Found the matching index
|
||||
}
|
||||
}
|
||||
return -1; // Not found
|
||||
};
|
||||
|
||||
// Handle nearest points and final path (including arc points)
|
||||
useEffect(() => {
|
||||
if (circlePoints.length > 0 && currentPath.length > 0) {
|
||||
const start = currentPath[0];
|
||||
const end = currentPath[currentPath.length - 1];
|
||||
|
||||
const raisedStart = [start[0], start[1] + 0.5, start[2]] as [
|
||||
number,
|
||||
number,
|
||||
number
|
||||
];
|
||||
const raisedEnd = [end[0], end[1] + 0.5, end[2]] as [
|
||||
number,
|
||||
number,
|
||||
number
|
||||
];
|
||||
|
||||
const findNearest = (target: [number, number, number]) => {
|
||||
return circlePoints.reduce((nearest, point) => {
|
||||
const distance = Math.hypot(
|
||||
target[0] - point[0],
|
||||
target[1] - point[1],
|
||||
target[2] - point[2]
|
||||
);
|
||||
const nearestDistance = Math.hypot(
|
||||
target[0] - nearest[0],
|
||||
target[1] - nearest[1],
|
||||
target[2] - nearest[2]
|
||||
);
|
||||
return distance < nearestDistance ? point : nearest;
|
||||
}, circlePoints[0]);
|
||||
};
|
||||
|
||||
const nearestToStart = findNearest(raisedStart);
|
||||
|
||||
const nearestToEnd = findNearest(raisedEnd);
|
||||
|
||||
const indexOfNearestStart = findNearestIndex(
|
||||
nearestToStart,
|
||||
circlePoints
|
||||
);
|
||||
|
||||
const indexOfNearestEnd = findNearestIndex(nearestToEnd, circlePoints);
|
||||
|
||||
// Find clockwise and counter-clockwise distances
|
||||
const clockwiseDistance =
|
||||
(indexOfNearestEnd - indexOfNearestStart + 64) % 64;
|
||||
|
||||
const counterClockwiseDistance =
|
||||
(indexOfNearestStart - indexOfNearestEnd + 64) % 64;
|
||||
|
||||
const clockwiseIsShorter = clockwiseDistance <= counterClockwiseDistance;
|
||||
|
||||
// Collect arc points between start and end
|
||||
let arcPoints: [number, number, number][] = [];
|
||||
|
||||
if (clockwiseIsShorter) {
|
||||
if (indexOfNearestStart <= indexOfNearestEnd) {
|
||||
arcPoints = circlePoints.slice(
|
||||
indexOfNearestStart,
|
||||
indexOfNearestEnd + 1
|
||||
);
|
||||
} else {
|
||||
// Wrap around
|
||||
arcPoints = [
|
||||
...circlePoints.slice(indexOfNearestStart, 64),
|
||||
...circlePoints.slice(0, indexOfNearestEnd + 1),
|
||||
];
|
||||
}
|
||||
return -1; // Not found
|
||||
};
|
||||
|
||||
|
||||
// Handle nearest points and final path (including arc points)
|
||||
useEffect(() => {
|
||||
if (circlePoints.length > 0 && currentPath.length > 0) {
|
||||
const start = currentPath[0];
|
||||
const end = currentPath[currentPath.length - 1];
|
||||
|
||||
const raisedStart = [start[0], start[1] + 0.5, start[2]] as [number, number, number];
|
||||
const raisedEnd = [end[0], end[1] + 0.5, end[2]] as [number, number, number];
|
||||
|
||||
const findNearest = (target: [number, number, number]) => {
|
||||
return circlePoints.reduce((nearest, point) => {
|
||||
const distance = Math.hypot(
|
||||
target[0] - point[0],
|
||||
target[1] - point[1],
|
||||
target[2] - point[2]
|
||||
);
|
||||
const nearestDistance = Math.hypot(
|
||||
target[0] - nearest[0],
|
||||
target[1] - nearest[1],
|
||||
target[2] - nearest[2]
|
||||
);
|
||||
return distance < nearestDistance ? point : nearest;
|
||||
}, circlePoints[0]);
|
||||
};
|
||||
|
||||
const nearestToStart = findNearest(raisedStart);
|
||||
|
||||
const nearestToEnd = findNearest(raisedEnd);
|
||||
|
||||
const indexOfNearestStart = findNearestIndex(nearestToStart, circlePoints);
|
||||
|
||||
const indexOfNearestEnd = findNearestIndex(nearestToEnd, circlePoints);
|
||||
|
||||
// Find clockwise and counter-clockwise distances
|
||||
const clockwiseDistance = (indexOfNearestEnd - indexOfNearestStart + 64) % 64;
|
||||
|
||||
const counterClockwiseDistance = (indexOfNearestStart - indexOfNearestEnd + 64) % 64;
|
||||
|
||||
const clockwiseIsShorter = clockwiseDistance <= counterClockwiseDistance;
|
||||
|
||||
// Collect arc points between start and end
|
||||
let arcPoints: [number, number, number][] = [];
|
||||
|
||||
if (clockwiseIsShorter) {
|
||||
if (indexOfNearestStart <= indexOfNearestEnd) {
|
||||
arcPoints = circlePoints.slice(indexOfNearestStart, indexOfNearestEnd + 1);
|
||||
} else {
|
||||
// Wrap around
|
||||
arcPoints = [
|
||||
...circlePoints.slice(indexOfNearestStart, 64),
|
||||
...circlePoints.slice(0, indexOfNearestEnd + 1)
|
||||
];
|
||||
}
|
||||
} else {
|
||||
if (indexOfNearestStart >= indexOfNearestEnd) {
|
||||
for (let i = indexOfNearestStart; i !== (indexOfNearestEnd - 1 + 64) % 64; i = (i - 1 + 64) % 64) {
|
||||
arcPoints.push(circlePoints[i]);
|
||||
}
|
||||
} else {
|
||||
for (let i = indexOfNearestStart; i !== (indexOfNearestEnd - 1 + 64) % 64; i = (i - 1 + 64) % 64) {
|
||||
arcPoints.push(circlePoints[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Continue your custom path logic
|
||||
const pathVectors = [
|
||||
new THREE.Vector3(start[0], start[1], start[2]), // start
|
||||
new THREE.Vector3(raisedStart[0], raisedStart[1], raisedStart[2]), // lift up
|
||||
new THREE.Vector3(nearestToStart[0], raisedStart[1], nearestToStart[2]), // move to arc start
|
||||
...arcPoints.map(point => new THREE.Vector3(point[0], raisedStart[1], point[2])),
|
||||
new THREE.Vector3(nearestToEnd[0], raisedEnd[1], nearestToEnd[2]), // move from arc end
|
||||
new THREE.Vector3(raisedEnd[0], raisedEnd[1], raisedEnd[2]), // lowered end
|
||||
new THREE.Vector3(end[0], end[1], end[2]) // end
|
||||
];
|
||||
|
||||
const customCurve = new THREE.CatmullRomCurve3(pathVectors, false, 'centripetal', 1);
|
||||
const generatedPoints = customCurve.getPoints(100);
|
||||
setCustomCurvePoints(generatedPoints);
|
||||
} else if (indexOfNearestStart >= indexOfNearestEnd) {
|
||||
for (
|
||||
let i = indexOfNearestStart;
|
||||
i !== (indexOfNearestEnd - 1 + 64) % 64;
|
||||
i = (i - 1 + 64) % 64
|
||||
) {
|
||||
arcPoints.push(circlePoints[i]);
|
||||
}
|
||||
}, [circlePoints, currentPath]);
|
||||
}
|
||||
|
||||
// Frame update for animation
|
||||
useFrame((_, delta) => {
|
||||
if (!ikSolver) return;
|
||||
// Continue your custom path logic
|
||||
const pathVectors = [
|
||||
new THREE.Vector3(start[0], start[1], start[2]), // start
|
||||
new THREE.Vector3(raisedStart[0], raisedStart[1], raisedStart[2]), // lift up
|
||||
new THREE.Vector3(nearestToStart[0], raisedStart[1], nearestToStart[2]), // move to arc start
|
||||
...arcPoints.map(
|
||||
(point) => new THREE.Vector3(point[0], raisedStart[1], point[2])
|
||||
),
|
||||
new THREE.Vector3(nearestToEnd[0], raisedEnd[1], nearestToEnd[2]), // move from arc end
|
||||
new THREE.Vector3(raisedEnd[0], raisedEnd[1], raisedEnd[2]), // lowered end
|
||||
new THREE.Vector3(end[0], end[1], end[2]), // end
|
||||
];
|
||||
|
||||
const bone = ikSolver.mesh.skeleton.bones.find((b: any) => b.name === targetBone);
|
||||
if (!bone) return;
|
||||
const customCurve = new THREE.CatmullRomCurve3(
|
||||
pathVectors,
|
||||
false,
|
||||
"centripetal",
|
||||
1
|
||||
);
|
||||
const generatedPoints = customCurve.getPoints(100);
|
||||
setCustomCurvePoints(generatedPoints);
|
||||
}
|
||||
}, [circlePoints, currentPath]);
|
||||
|
||||
if (isPlaying) {
|
||||
if (!isPaused && customCurvePoints && currentPath.length > 0) {
|
||||
const curvePoints = customCurvePoints;
|
||||
const speedAdjustedProgress = progressRef.current + (speed * armBot.speed);
|
||||
const index = Math.floor(speedAdjustedProgress);
|
||||
// Frame update for animation
|
||||
useFrame((_, delta) => {
|
||||
if (!ikSolver) return;
|
||||
|
||||
if (index >= curvePoints.length) {
|
||||
// Reached the end of the curve
|
||||
HandleCallback();
|
||||
setCurrentPath([]);
|
||||
curveRef.current = null;
|
||||
progressRef.current = 0;
|
||||
} else {
|
||||
const point = curvePoints[index];
|
||||
bone.position.copy(point);
|
||||
progressRef.current = speedAdjustedProgress;
|
||||
}
|
||||
} else if (isPaused) {
|
||||
logStatus(armBot.modelUuid, 'Simulation Paused');
|
||||
}
|
||||
|
||||
ikSolver.update();
|
||||
} else if (!isPlaying && currentPath.length === 0) {
|
||||
// Not playing anymore, reset to rest
|
||||
bone.position.copy(restPosition);
|
||||
ikSolver.update();
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
return (
|
||||
<>
|
||||
{customCurvePoints && currentPath && isPlaying && (
|
||||
<mesh rotation={armBot.rotation} position={armBot.position}>
|
||||
<Line
|
||||
points={customCurvePoints.map((p) => [p.x, p.y, p.z] as [number, number, number])}
|
||||
color="green"
|
||||
lineWidth={5}
|
||||
dashed={false}
|
||||
/>
|
||||
</mesh>
|
||||
)}
|
||||
<mesh position={[armBot.position[0], armBot.position[1] + 1.5, armBot.position[2]]} rotation={[-Math.PI / 2, 0, 0]}>
|
||||
<ringGeometry args={[1.59, 1.61, 64]} />
|
||||
<meshBasicMaterial color="green" side={THREE.DoubleSide} />
|
||||
</mesh>
|
||||
</>
|
||||
const bone = ikSolver.mesh.skeleton.bones.find(
|
||||
(b: any) => b.name === targetBone
|
||||
);
|
||||
if (!bone) return;
|
||||
|
||||
if (isPlaying) {
|
||||
if (!isPaused && customCurvePoints && currentPath.length > 0) {
|
||||
const curvePoints = customCurvePoints;
|
||||
const speedAdjustedProgress =
|
||||
progressRef.current + speed * armBot.speed;
|
||||
const index = Math.floor(speedAdjustedProgress);
|
||||
|
||||
if (index >= curvePoints.length) {
|
||||
// Reached the end of the curve
|
||||
HandleCallback();
|
||||
setCurrentPath([]);
|
||||
curveRef.current = null;
|
||||
progressRef.current = 0;
|
||||
} else {
|
||||
const point = curvePoints[index];
|
||||
bone.position.copy(point);
|
||||
progressRef.current = speedAdjustedProgress;
|
||||
}
|
||||
} else if (isPaused) {
|
||||
logStatus(armBot.modelUuid, "Simulation Paused");
|
||||
}
|
||||
|
||||
ikSolver.update();
|
||||
} else if (!isPlaying && currentPath.length === 0) {
|
||||
// Not playing anymore, reset to rest
|
||||
bone.position.copy(restPosition);
|
||||
ikSolver.update();
|
||||
}
|
||||
});
|
||||
|
||||
return (
|
||||
<>
|
||||
{customCurvePoints && currentPath && isPlaying && (
|
||||
<mesh rotation={armBot.rotation} position={armBot.position}>
|
||||
<Line
|
||||
points={customCurvePoints.map(
|
||||
(p) => [p.x, p.y, p.z] as [number, number, number]
|
||||
)}
|
||||
color="green"
|
||||
lineWidth={5}
|
||||
dashed={false}
|
||||
/>
|
||||
</mesh>
|
||||
)}
|
||||
<mesh
|
||||
position={[
|
||||
armBot.position[0],
|
||||
armBot.position[1] + 1.5,
|
||||
armBot.position[2],
|
||||
]}
|
||||
rotation={[-Math.PI / 2, 0, 0]}
|
||||
visible={false}
|
||||
>
|
||||
<ringGeometry args={[1.59, 1.61, 64]} />
|
||||
<meshBasicMaterial color="green" side={THREE.DoubleSide} />
|
||||
</mesh>
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
export default RoboticArmAnimator;
|
||||
|
||||
Reference in New Issue
Block a user